/* * Diff Match and Patch * Copyright 2018 The diff-match-patch Authors. * https://github.com/google/diff-match-patch * * Licensed under the Apache License, Version 2.0 (the "License"); * you may not use this file except in compliance with the License. * You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ /* * Functions for diff, match and patch. * Computes the difference between two texts to create a patch. * Applies the patch onto another text, allowing for errors. * * @author fraser@google.com (Neil Fraser) */ // ignore_for_file: no_leading_underscores_for_local_identifiers // ignore_for_file: non_constant_identifier_names // ignore_for_file: unnecessary_this import 'dart:collection'; import 'dart:math'; // adapted from Google's `Diff Match and Patch` Dart implementation // cf https://github.com/google/diff-match-patch/tree/master/dart /// Class representing one diff operation. class Diff { /// One of: Operation.insert, Operation.delete or Operation.equal. Operation operation; /// The text associated with this diff operation. String text; /// Constructor. Initializes the diff with the provided values. /// [operation] is one of Operation.insert, Operation.delete or Operation.equal. /// [text] is the text being applied. Diff(this.operation, this.text); /// Display a human-readable version of this Diff. /// Returns a text version. @override String toString() { String prettyText = this.text.replaceAll('\n', '\u00b6'); return 'Diff(${this.operation},"$prettyText")'; } /// Is this Diff equivalent to another Diff? /// [other] is another Diff to compare against. /// Returns true or false. @override bool operator ==(Object other) => identical(this, other) || other is Diff && runtimeType == other.runtimeType && operation == other.operation && text == other.text; /// Generate a uniquely identifiable hashcode for this Diff. /// Returns numeric hashcode. @override int get hashCode => operation.hashCode ^ text.hashCode; } /// The data structure representing a diff is a List of Diff objects: /// {Diff(Operation.delete, 'Hello'), Diff(Operation.insert, 'Goodbye'), /// Diff(Operation.equal, ' world.')} /// which means: delete 'Hello', add 'Goodbye' and keep ' world.' enum Operation { delete, insert, equal } /// Class containing the diff, match and patch methods. /// Also contains the behaviour settings. class DiffMatchPatch { // Defaults. // Set these on your diff_match_patch instance to override the defaults. /// Number of seconds to map a diff before giving up (0 for infinity). double Diff_Timeout = 1.0; /// Cost of an empty edit operation in terms of edit characters. int Diff_EditCost = 4; /// At what point is no match declared (0.0 = perfection, 1.0 = very loose). double Match_Threshold = 0.5; /// How far to search for a match (0 = exact location, 1000+ = broad match). /// A match this many characters away from the expected location will add /// 1.0 to the score (0.0 is a perfect match). int Match_Distance = 1000; /// When deleting a large block of text (over ~64 characters), how close do /// the contents have to be to match the expected contents. (0.0 = perfection, /// 1.0 = very loose). Note that Match_Threshold controls how closely the /// end points of a delete need to match. double Patch_DeleteThreshold = 0.5; /// Chunk size for context length. int Patch_Margin = 4; /// The number of bits in an int. int Match_MaxBits = 32; // DIFF FUNCTIONS /// Find the differences between two texts. Simplifies the problem by /// stripping any common prefix or suffix off the texts before diffing. /// [text1] is the old string to be diffed. /// [text2] is the new string to be diffed. /// [checklines] is an optional speedup flag. If present and false, then don't /// run a line-level diff first to identify the changed areas. /// Defaults to true, which does a faster, slightly less optimal diff. /// [deadline] is an optional time when the diff should be complete by. Used /// internally for recursive calls. Users should set DiffTimeout instead. /// Returns a List of Diff objects. List diff_main(String? text1, String? text2, [bool checklines = true, DateTime? deadline]) { // Set a deadline by which time the diff must be complete. if (deadline == null) { deadline = DateTime.now(); if (Diff_Timeout <= 0) { // One year should be sufficient for 'infinity'. deadline = deadline.add(const Duration(days: 365)); } else { deadline = deadline.add(Duration(milliseconds: (Diff_Timeout * 1000).toInt())); } } // Check for null inputs. if (text1 == null || text2 == null) { throw ArgumentError('Null inputs. (diff_main)'); } // Check for equality (speedup). List diffs; if (text1 == text2) { diffs = []; if (text1.isNotEmpty) { diffs.add(Diff(Operation.equal, text1)); } return diffs; } // Trim off common prefix (speedup). int commonlength = diff_commonPrefix(text1, text2); String commonprefix = text1.substring(0, commonlength); text1 = text1.substring(commonlength); text2 = text2.substring(commonlength); // Trim off common suffix (speedup). commonlength = diff_commonSuffix(text1, text2); String commonsuffix = text1.substring(text1.length - commonlength); text1 = text1.substring(0, text1.length - commonlength); text2 = text2.substring(0, text2.length - commonlength); // Compute the diff on the middle block. diffs = _diff_compute(text1, text2, checklines, deadline); // Restore the prefix and suffix. if (commonprefix.isNotEmpty) { diffs.insert(0, Diff(Operation.equal, commonprefix)); } if (commonsuffix.isNotEmpty) { diffs.add(Diff(Operation.equal, commonsuffix)); } diff_cleanupMerge(diffs); return diffs; } /// Find the differences between two texts. Assumes that the texts do not /// have any common prefix or suffix. /// [text1] is the old string to be diffed. /// [text2] is the new string to be diffed. /// [checklines] is a speedup flag. If false, then don't run a /// line-level diff first to identify the changed areas. /// If true, then run a faster slightly less optimal diff. /// [deadline] is the time when the diff should be complete by. /// Returns a List of Diff objects. List _diff_compute(String text1, String text2, bool checklines, DateTime deadline) { List diffs = []; if (text1.isEmpty) { // Just add some text (speedup). diffs.add(Diff(Operation.insert, text2)); return diffs; } if (text2.isEmpty) { // Just delete some text (speedup). diffs.add(Diff(Operation.delete, text1)); return diffs; } String longtext = text1.length > text2.length ? text1 : text2; String shorttext = text1.length > text2.length ? text2 : text1; int i = longtext.indexOf(shorttext); if (i != -1) { // Shorter text is inside the longer text (speedup). Operation op = (text1.length > text2.length) ? Operation.delete : Operation.insert; diffs.add(Diff(op, longtext.substring(0, i))); diffs.add(Diff(Operation.equal, shorttext)); diffs.add(Diff(op, longtext.substring(i + shorttext.length))); return diffs; } if (shorttext.length == 1) { // Single character string. // After the previous speedup, the character can't be an equality. diffs.add(Diff(Operation.delete, text1)); diffs.add(Diff(Operation.insert, text2)); return diffs; } // Check to see if the problem can be split in two. final hm = _diff_halfMatch(text1, text2); if (hm != null) { // A half-match was found, sort out the return data. final text1_a = hm[0]; final text1_b = hm[1]; final text2_a = hm[2]; final text2_b = hm[3]; final mid_common = hm[4]; // Send both pairs off for separate processing. final diffs_a = diff_main(text1_a, text2_a, checklines, deadline); final diffs_b = diff_main(text1_b, text2_b, checklines, deadline); // Merge the results. diffs = diffs_a; diffs.add(Diff(Operation.equal, mid_common)); diffs.addAll(diffs_b); return diffs; } if (checklines && text1.length > 100 && text2.length > 100) { return _diff_lineMode(text1, text2, deadline); } return _diff_bisect(text1, text2, deadline); } /// Do a quick line-level diff on both strings, then rediff the parts for /// greater accuracy. /// This speedup can produce non-minimal diffs. /// [text1] is the old string to be diffed. /// [text2] is the new string to be diffed. /// [deadline] is the time when the diff should be complete by. /// Returns a List of Diff objects. List _diff_lineMode(String text1, String text2, DateTime deadline) { // Scan the text on a line-by-line basis first. final a = _diff_linesToChars(text1, text2); text1 = a['chars1']; text2 = a['chars2']; final linearray = a['lineArray']; final diffs = diff_main(text1, text2, false, deadline); // Convert the diff back to original text. _diff_charsToLines(diffs, linearray); // Eliminate freak matches (e.g. blank lines) diff_cleanupSemantic(diffs); // Rediff any replacement blocks, this time character-by-character. // Add a dummy entry at the end. diffs.add(Diff(Operation.equal, '')); int pointer = 0; int count_delete = 0; int count_insert = 0; final text_delete = StringBuffer(); final text_insert = StringBuffer(); while (pointer < diffs.length) { switch (diffs[pointer].operation) { case Operation.insert: count_insert++; text_insert.write(diffs[pointer].text); break; case Operation.delete: count_delete++; text_delete.write(diffs[pointer].text); break; case Operation.equal: // Upon reaching an equality, check for prior redundancies. if (count_delete >= 1 && count_insert >= 1) { // Delete the offending records and add the merged ones. diffs.removeRange(pointer - count_delete - count_insert, pointer); pointer = pointer - count_delete - count_insert; final subDiff = diff_main(text_delete.toString(), text_insert.toString(), false, deadline); for (int j = subDiff.length - 1; j >= 0; j--) { diffs.insert(pointer, subDiff[j]); } pointer = pointer + subDiff.length; } count_insert = 0; count_delete = 0; text_delete.clear(); text_insert.clear(); break; } pointer++; } diffs.removeLast(); // Remove the dummy entry at the end. return diffs; } /// Find the 'middle snake' of a diff, split the problem in two /// and return the recursively constructed diff. /// See Myers 1986 paper: An O(ND) Difference Algorithm and Its Variations. /// [text1] is the old string to be diffed. /// [text2] is the new string to be diffed. /// [deadline] is the time at which to bail if not yet complete. /// Returns a List of Diff objects. List _diff_bisect(String text1, String text2, DateTime deadline) { // Cache the text lengths to prevent multiple calls. final text1_length = text1.length; final text2_length = text2.length; final max_d = (text1_length + text2_length + 1) ~/ 2; final v_offset = max_d; final v_length = 2 * max_d; final v1 = List.filled(v_length, -1); final v2 = List.filled(v_length, -1); v1[v_offset + 1] = 0; v2[v_offset + 1] = 0; final delta = text1_length - text2_length; // If the total number of characters is odd, then the front path will // collide with the reverse path. final front = (delta % 2 != 0); // Offsets for start and end of k loop. // Prevents mapping of space beyond the grid. int k1start = 0; int k1end = 0; int k2start = 0; int k2end = 0; for (int d = 0; d < max_d; d++) { // Bail out if deadline is reached. if ((DateTime.now()).compareTo(deadline) == 1) { break; } // Walk the front path one step. for (int k1 = -d + k1start; k1 <= d - k1end; k1 += 2) { int k1_offset = v_offset + k1; int x1; if (k1 == -d || k1 != d && v1[k1_offset - 1] < v1[k1_offset + 1]) { x1 = v1[k1_offset + 1]; } else { x1 = v1[k1_offset - 1] + 1; } int y1 = x1 - k1; while (x1 < text1_length && y1 < text2_length && text1[x1] == text2[y1]) { x1++; y1++; } v1[k1_offset] = x1; if (x1 > text1_length) { // Ran off the right of the graph. k1end += 2; } else if (y1 > text2_length) { // Ran off the bottom of the graph. k1start += 2; } else if (front) { int k2_offset = v_offset + delta - k1; if (k2_offset >= 0 && k2_offset < v_length && v2[k2_offset] != -1) { // Mirror x2 onto top-left coordinate system. int x2 = text1_length - v2[k2_offset]; if (x1 >= x2) { // Overlap detected. return _diff_bisectSplit(text1, text2, x1, y1, deadline); } } } } // Walk the reverse path one step. for (int k2 = -d + k2start; k2 <= d - k2end; k2 += 2) { int k2_offset = v_offset + k2; int x2; if (k2 == -d || k2 != d && v2[k2_offset - 1] < v2[k2_offset + 1]) { x2 = v2[k2_offset + 1]; } else { x2 = v2[k2_offset - 1] + 1; } int y2 = x2 - k2; while (x2 < text1_length && y2 < text2_length && text1[text1_length - x2 - 1] == text2[text2_length - y2 - 1]) { x2++; y2++; } v2[k2_offset] = x2; if (x2 > text1_length) { // Ran off the left of the graph. k2end += 2; } else if (y2 > text2_length) { // Ran off the top of the graph. k2start += 2; } else if (!front) { int k1_offset = v_offset + delta - k2; if (k1_offset >= 0 && k1_offset < v_length && v1[k1_offset] != -1) { int x1 = v1[k1_offset]; int y1 = v_offset + x1 - k1_offset; // Mirror x2 onto top-left coordinate system. x2 = text1_length - x2; if (x1 >= x2) { // Overlap detected. return _diff_bisectSplit(text1, text2, x1, y1, deadline); } } } } } // Diff took too long and hit the deadline or // number of diffs equals number of characters, no commonality at all. return [Diff(Operation.delete, text1), Diff(Operation.insert, text2)]; } /// Hack to allow unit tests to call private method. Do not use. List test_diff_bisect(String text1, String text2, DateTime deadline) { return _diff_bisect(text1, text2, deadline); } /// Given the location of the 'middle snake', split the diff in two parts /// and recurse. /// [text1] is the old string to be diffed. /// [text2] is the new string to be diffed. /// [x] is the index of split point in text1. /// [y] is the index of split point in text2. /// [deadline] is the time at which to bail if not yet complete. /// Returns a List of Diff objects. List _diff_bisectSplit(String text1, String text2, int x, int y, DateTime deadline) { final text1a = text1.substring(0, x); final text2a = text2.substring(0, y); final text1b = text1.substring(x); final text2b = text2.substring(y); // Compute both diffs serially. final diffs = diff_main(text1a, text2a, false, deadline); final diffsb = diff_main(text1b, text2b, false, deadline); diffs.addAll(diffsb); return diffs; } /// Split two texts into a list of strings. Reduce the texts to a string of /// hashes where each Unicode character represents one line. /// [text1] is the first string. /// [text2] is the second string. /// Returns a Map containing the encoded text1, the encoded text2 and /// the List of unique strings. The zeroth element of the List of /// unique strings is intentionally blank. Map _diff_linesToChars(String text1, String text2) { final lineArray = []; final lineHash = HashMap(); // e.g. linearray[4] == 'Hello\n' // e.g. linehash['Hello\n'] == 4 // '\x00' is a valid character, but various debuggers don't like it. // So we'll insert a junk entry to avoid generating a null character. lineArray.add(''); // Allocate 2/3rds of the space for text1, the rest for text2. String chars1 = _diff_linesToCharsMunge(text1, lineArray, lineHash, 40000); String chars2 = _diff_linesToCharsMunge(text2, lineArray, lineHash, 65535); return {'chars1': chars1, 'chars2': chars2, 'lineArray': lineArray}; } /// Hack to allow unit tests to call private method. Do not use. Map test_diff_linesToChars(String text1, String text2) { return _diff_linesToChars(text1, text2); } /// Split a text into a list of strings. Reduce the texts to a string of /// hashes where each Unicode character represents one line. /// [text] is the string to encode. /// [lineArray] is a List of unique strings. /// [lineHash] is a Map of strings to indices. /// [maxLines] is the maximum length for lineArray. /// Returns an encoded string. String _diff_linesToCharsMunge(String text, List lineArray, Map lineHash, int maxLines) { int lineStart = 0; int lineEnd = -1; String line; final chars = StringBuffer(); // Walk the text, pulling out a substring for each line. // text.split('\n') would would temporarily double our memory footprint. // Modifying text would create many large strings to garbage collect. while (lineEnd < text.length - 1) { lineEnd = text.indexOf('\n', lineStart); if (lineEnd == -1) { lineEnd = text.length - 1; } line = text.substring(lineStart, lineEnd + 1); if (lineHash.containsKey(line)) { chars.writeCharCode(lineHash[line]!); } else { if (lineArray.length == maxLines) { // Bail out at 65535 because // final chars1 = StringBuffer(); // chars1.writeCharCode(65536); // chars1.toString().codeUnitAt(0) == 55296; line = text.substring(lineStart); lineEnd = text.length; } lineArray.add(line); lineHash[line] = lineArray.length - 1; chars.writeCharCode(lineArray.length - 1); } lineStart = lineEnd + 1; } return chars.toString(); } /// Rehydrate the text in a diff from a string of line hashes to real lines of /// text. /// [diffs] is a List of Diff objects. /// [lineArray] is a List of unique strings. void _diff_charsToLines(List diffs, List lineArray) { final text = StringBuffer(); for (Diff diff in diffs) { for (int j = 0; j < diff.text.length; j++) { text.write(lineArray[diff.text.codeUnitAt(j)]); } diff.text = text.toString(); text.clear(); } } /// Hack to allow unit tests to call private method. Do not use. void test_diff_charsToLines(List diffs, List lineArray) { _diff_charsToLines(diffs, lineArray); } /// Determine the common prefix of two strings /// [text1] is the first string. /// [text2] is the second string. /// Returns the number of characters common to the start of each string. int diff_commonPrefix(String text1, String text2) { // TODO: Once Dart's performance stabilizes, determine if linear or binary // search is better. // Performance analysis: https://neil.fraser.name/news/2007/10/09/ final n = min(text1.length, text2.length); for (int i = 0; i < n; i++) { if (text1[i] != text2[i]) { return i; } } return n; } /// Determine the common suffix of two strings /// [text1] is the first string. /// [text2] is the second string. /// Returns the number of characters common to the end of each string. int diff_commonSuffix(String text1, String text2) { // TODO: Once Dart's performance stabilizes, determine if linear or binary // search is better. // Performance analysis: https://neil.fraser.name/news/2007/10/09/ final text1_length = text1.length; final text2_length = text2.length; final n = min(text1_length, text2_length); for (int i = 1; i <= n; i++) { if (text1[text1_length - i] != text2[text2_length - i]) { return i - 1; } } return n; } /// Determine if the suffix of one string is the prefix of another. /// [text1] is the first string. /// [text2] is the second string. /// Returns the number of characters common to the end of the first /// string and the start of the second string. int _diff_commonOverlap(String text1, String text2) { // Eliminate the null case. if (text1.isEmpty || text2.isEmpty) { return 0; } // Cache the text lengths to prevent multiple calls. final text1_length = text1.length; final text2_length = text2.length; // Truncate the longer string. if (text1_length > text2_length) { text1 = text1.substring(text1_length - text2_length); } else if (text1_length < text2_length) { text2 = text2.substring(0, text1_length); } final text_length = min(text1_length, text2_length); // Quick check for the worst case. if (text1 == text2) { return text_length; } // Start by looking for a single character match // and increase length until no match is found. // Performance analysis: https://neil.fraser.name/news/2010/11/04/ int best = 0; int length = 1; while (true) { String pattern = text1.substring(text_length - length); int found = text2.indexOf(pattern); if (found == -1) { return best; } length += found; if (found == 0 || text1.substring(text_length - length) == text2.substring(0, length)) { best = length; length++; } } } /// Hack to allow unit tests to call private method. Do not use. int test_diff_commonOverlap(String text1, String text2) { return _diff_commonOverlap(text1, text2); } /// Do the two texts share a substring which is at least half the length of /// the longer text? /// This speedup can produce non-minimal diffs. /// [text1] is the first string. /// [text2] is the second string. /// Returns a five element List of Strings, containing the prefix of text1, /// the suffix of text1, the prefix of text2, the suffix of text2 and the /// common middle. Or null if there was no match. List? _diff_halfMatch(String text1, String text2) { if (Diff_Timeout <= 0) { // Don't risk returning a non-optimal diff if we have unlimited time. return null; } final longtext = text1.length > text2.length ? text1 : text2; final shorttext = text1.length > text2.length ? text2 : text1; if (longtext.length < 4 || shorttext.length * 2 < longtext.length) { return null; // Pointless. } // First check if the second quarter is the seed for a half-match. final hm1 = _diff_halfMatchI(longtext, shorttext, ((longtext.length + 3) / 4).ceil().toInt()); // Check again based on the third quarter. final hm2 = _diff_halfMatchI(longtext, shorttext, ((longtext.length + 1) / 2).ceil().toInt()); List hm; if (hm1 == null && hm2 == null) { return null; } else if (hm2 == null) { hm = hm1!; } else if (hm1 == null) { hm = hm2; } else { // Both matched. Select the longest. hm = hm1[4].length > hm2[4].length ? hm1 : hm2; } // A half-match was found, sort out the return data. if (text1.length > text2.length) { return hm; //return [hm[0], hm[1], hm[2], hm[3], hm[4]]; } else { return [hm[2], hm[3], hm[0], hm[1], hm[4]]; } } /// Hack to allow unit tests to call private method. Do not use. List? test_diff_halfMatch(String text1, String text2) { return _diff_halfMatch(text1, text2); } /// Does a substring of shorttext exist within longtext such that the /// substring is at least half the length of longtext? /// [longtext] is the longer string. /// [shorttext is the shorter string. /// [i] Start index of quarter length substring within longtext. /// Returns a five element String array, containing the prefix of longtext, /// the suffix of longtext, the prefix of shorttext, the suffix of /// shorttext and the common middle. Or null if there was no match. List? _diff_halfMatchI(String longtext, String shorttext, int i) { // Start with a 1/4 length substring at position i as a seed. final seed = longtext.substring(i, i + (longtext.length / 4).floor().toInt()); int j = -1; String best_common = ''; String best_longtext_a = '', best_longtext_b = ''; String best_shorttext_a = '', best_shorttext_b = ''; while ((j = shorttext.indexOf(seed, j + 1)) != -1) { int prefixLength = diff_commonPrefix(longtext.substring(i), shorttext.substring(j)); int suffixLength = diff_commonSuffix(longtext.substring(0, i), shorttext.substring(0, j)); if (best_common.length < suffixLength + prefixLength) { best_common = shorttext.substring(j - suffixLength, j) + shorttext.substring(j, j + prefixLength); best_longtext_a = longtext.substring(0, i - suffixLength); best_longtext_b = longtext.substring(i + prefixLength); best_shorttext_a = shorttext.substring(0, j - suffixLength); best_shorttext_b = shorttext.substring(j + prefixLength); } } if (best_common.length * 2 >= longtext.length) { return [best_longtext_a, best_longtext_b, best_shorttext_a, best_shorttext_b, best_common]; } else { return null; } } /// Reduce the number of edits by eliminating semantically trivial equalities. /// [diffs] is a List of Diff objects. void diff_cleanupSemantic(List diffs) { bool changes = false; // Stack of indices where equalities are found. final equalities = []; // Always equal to diffs[equalities.last()].text String? lastEquality; int pointer = 0; // Index of current position. // Number of characters that changed prior to the equality. int length_insertions1 = 0; int length_deletions1 = 0; // Number of characters that changed after the equality. int length_insertions2 = 0; int length_deletions2 = 0; while (pointer < diffs.length) { if (diffs[pointer].operation == Operation.equal) { // Equality found. equalities.add(pointer); length_insertions1 = length_insertions2; length_deletions1 = length_deletions2; length_insertions2 = 0; length_deletions2 = 0; lastEquality = diffs[pointer].text; } else { // An insertion or deletion. if (diffs[pointer].operation == Operation.insert) { length_insertions2 += diffs[pointer].text.length; } else { length_deletions2 += diffs[pointer].text.length; } // Eliminate an equality that is smaller or equal to the edits on both // sides of it. if (lastEquality != null && (lastEquality.length <= max(length_insertions1, length_deletions1)) && (lastEquality.length <= max(length_insertions2, length_deletions2))) { // Duplicate record. diffs.insert(equalities.last, Diff(Operation.delete, lastEquality)); // Change second copy to insert. diffs[equalities.last + 1].operation = Operation.insert; // Throw away the equality we just deleted. equalities.removeLast(); // Throw away the previous equality (it needs to be reevaluated). if (equalities.isNotEmpty) { equalities.removeLast(); } pointer = equalities.isEmpty ? -1 : equalities.last; length_insertions1 = 0; // Reset the counters. length_deletions1 = 0; length_insertions2 = 0; length_deletions2 = 0; lastEquality = null; changes = true; } } pointer++; } // Normalize the diff. if (changes) { diff_cleanupMerge(diffs); } _diff_cleanupSemanticLossless(diffs); // Find any overlaps between deletions and insertions. // e.g: abcxxxxxxdef // -> abcxxxdef // e.g: xxxabcdefxxx // -> defxxxabc // Only extract an overlap if it is as big as the edit ahead or behind it. pointer = 1; while (pointer < diffs.length) { if (diffs[pointer - 1].operation == Operation.delete && diffs[pointer].operation == Operation.insert) { String deletion = diffs[pointer - 1].text; String insertion = diffs[pointer].text; int overlap_length1 = _diff_commonOverlap(deletion, insertion); int overlap_length2 = _diff_commonOverlap(insertion, deletion); if (overlap_length1 >= overlap_length2) { if (overlap_length1 >= deletion.length / 2 || overlap_length1 >= insertion.length / 2) { // Overlap found. // Insert an equality and trim the surrounding edits. diffs.insert(pointer, Diff(Operation.equal, insertion.substring(0, overlap_length1))); diffs[pointer - 1].text = deletion.substring(0, deletion.length - overlap_length1); diffs[pointer + 1].text = insertion.substring(overlap_length1); pointer++; } } else { if (overlap_length2 >= deletion.length / 2 || overlap_length2 >= insertion.length / 2) { // Reverse overlap found. // Insert an equality and swap and trim the surrounding edits. diffs.insert(pointer, Diff(Operation.equal, deletion.substring(0, overlap_length2))); diffs[pointer - 1] = Diff(Operation.insert, insertion.substring(0, insertion.length - overlap_length2)); diffs[pointer + 1] = Diff(Operation.delete, deletion.substring(overlap_length2)); pointer++; } } pointer++; } pointer++; } } /// Look for single edits surrounded on both sides by equalities /// which can be shifted sideways to align the edit to a word boundary. /// e.g: The cat came. -> The cat came. /// [diffs] is a List of Diff objects. void _diff_cleanupSemanticLossless(List diffs) { /// Given two strings, compute a score representing whether the internal /// boundary falls on logical boundaries. /// Scores range from 6 (best) to 0 (worst). /// Closure, but does not reference any external variables. /// [one] the first string. /// [two] the second string. /// Returns the score. int _diff_cleanupSemanticScore(String one, String two) { if (one.isEmpty || two.isEmpty) { // Edges are the best. return 6; } // Each port of this function behaves slightly differently due to // subtle differences in each language's definition of things like // 'whitespace'. Since this function's purpose is largely cosmetic, // the choice has been made to use each language's native features // rather than force total conformity. String char1 = one[one.length - 1]; String char2 = two[0]; bool nonAlphaNumeric1 = char1.contains(nonAlphaNumericRegex_); bool nonAlphaNumeric2 = char2.contains(nonAlphaNumericRegex_); bool whitespace1 = nonAlphaNumeric1 && char1.contains(whitespaceRegex_); bool whitespace2 = nonAlphaNumeric2 && char2.contains(whitespaceRegex_); bool lineBreak1 = whitespace1 && char1.contains(linebreakRegex_); bool lineBreak2 = whitespace2 && char2.contains(linebreakRegex_); bool blankLine1 = lineBreak1 && one.contains(blanklineEndRegex_); bool blankLine2 = lineBreak2 && two.contains(blanklineStartRegex_); if (blankLine1 || blankLine2) { // Five points for blank lines. return 5; } else if (lineBreak1 || lineBreak2) { // Four points for line breaks. return 4; } else if (nonAlphaNumeric1 && !whitespace1 && whitespace2) { // Three points for end of sentences. return 3; } else if (whitespace1 || whitespace2) { // Two points for whitespace. return 2; } else if (nonAlphaNumeric1 || nonAlphaNumeric2) { // One point for non-alphanumeric. return 1; } return 0; } int pointer = 1; // Intentionally ignore the first and last element (don't need checking). while (pointer < diffs.length - 1) { if (diffs[pointer - 1].operation == Operation.equal && diffs[pointer + 1].operation == Operation.equal) { // This is a single edit surrounded by equalities. String equality1 = diffs[pointer - 1].text; String edit = diffs[pointer].text; String equality2 = diffs[pointer + 1].text; // First, shift the edit as far left as possible. int commonOffset = diff_commonSuffix(equality1, edit); if (commonOffset != 0) { String commonString = edit.substring(edit.length - commonOffset); equality1 = equality1.substring(0, equality1.length - commonOffset); edit = commonString + edit.substring(0, edit.length - commonOffset); equality2 = commonString + equality2; } // Second, step character by character right, looking for the best fit. String bestEquality1 = equality1; String bestEdit = edit; String bestEquality2 = equality2; int bestScore = _diff_cleanupSemanticScore(equality1, edit) + _diff_cleanupSemanticScore(edit, equality2); while (edit.isNotEmpty && equality2.isNotEmpty && edit[0] == equality2[0]) { equality1 = equality1 + edit[0]; edit = edit.substring(1) + equality2[0]; equality2 = equality2.substring(1); int score = _diff_cleanupSemanticScore(equality1, edit) + _diff_cleanupSemanticScore(edit, equality2); // The >= encourages trailing rather than leading whitespace on edits. if (score >= bestScore) { bestScore = score; bestEquality1 = equality1; bestEdit = edit; bestEquality2 = equality2; } } if (diffs[pointer - 1].text != bestEquality1) { // We have an improvement, save it back to the diff. if (bestEquality1.isNotEmpty) { diffs[pointer - 1].text = bestEquality1; } else { diffs.removeAt(pointer - 1); pointer--; } diffs[pointer].text = bestEdit; if (bestEquality2.isNotEmpty) { diffs[pointer + 1].text = bestEquality2; } else { diffs.removeAt(pointer + 1); pointer--; } } } pointer++; } } /// Hack to allow unit tests to call private method. Do not use. void test_diff_cleanupSemanticLossless(List diffs) { _diff_cleanupSemanticLossless(diffs); } // Define some regex patterns for matching boundaries. RegExp nonAlphaNumericRegex_ = RegExp(r'[^a-zA-Z0-9]'); RegExp whitespaceRegex_ = RegExp(r'\s'); RegExp linebreakRegex_ = RegExp(r'[\r\n]'); RegExp blanklineEndRegex_ = RegExp(r'\n\r?\n$'); RegExp blanklineStartRegex_ = RegExp(r'^\r?\n\r?\n'); /// Reduce the number of edits by eliminating operationally trivial equalities. /// [diffs] is a List of Diff objects. void diff_cleanupEfficiency(List diffs) { bool changes = false; // Stack of indices where equalities are found. final equalities = []; // Always equal to diffs[equalities.last()].text String? lastEquality; int pointer = 0; // Index of current position. // Is there an insertion operation before the last equality. bool pre_ins = false; // Is there a deletion operation before the last equality. bool pre_del = false; // Is there an insertion operation after the last equality. bool post_ins = false; // Is there a deletion operation after the last equality. bool post_del = false; while (pointer < diffs.length) { if (diffs[pointer].operation == Operation.equal) { // Equality found. if (diffs[pointer].text.length < Diff_EditCost && (post_ins || post_del)) { // Candidate found. equalities.add(pointer); pre_ins = post_ins; pre_del = post_del; lastEquality = diffs[pointer].text; } else { // Not a candidate, and can never become one. equalities.clear(); lastEquality = null; } post_ins = post_del = false; } else { // An insertion or deletion. if (diffs[pointer].operation == Operation.delete) { post_del = true; } else { post_ins = true; } /* * Five types to be split: * ABXYCD * AXCD * ABXC * AXCD * ABXC */ if (lastEquality != null && ((pre_ins && pre_del && post_ins && post_del) || ((lastEquality.length < Diff_EditCost / 2) && ((pre_ins ? 1 : 0) + (pre_del ? 1 : 0) + (post_ins ? 1 : 0) + (post_del ? 1 : 0)) == 3))) { // Duplicate record. diffs.insert(equalities.last, Diff(Operation.delete, lastEquality)); // Change second copy to insert. diffs[equalities.last + 1].operation = Operation.insert; equalities.removeLast(); // Throw away the equality we just deleted. lastEquality = null; if (pre_ins && pre_del) { // No changes made which could affect previous entry, keep going. post_ins = post_del = true; equalities.clear(); } else { if (equalities.isNotEmpty) { equalities.removeLast(); } pointer = equalities.isEmpty ? -1 : equalities.last; post_ins = post_del = false; } changes = true; } } pointer++; } if (changes) { diff_cleanupMerge(diffs); } } /// Reorder and merge like edit sections. Merge equalities. /// Any edit section can move as long as it doesn't cross an equality. /// [diffs] is a List of Diff objects. void diff_cleanupMerge(List diffs) { diffs.add(Diff(Operation.equal, '')); // Add a dummy entry at the end. int pointer = 0; int count_delete = 0; int count_insert = 0; String text_delete = ''; String text_insert = ''; int commonlength; while (pointer < diffs.length) { switch (diffs[pointer].operation) { case Operation.insert: count_insert++; text_insert += diffs[pointer].text; pointer++; break; case Operation.delete: count_delete++; text_delete += diffs[pointer].text; pointer++; break; case Operation.equal: // Upon reaching an equality, check for prior redundancies. if (count_delete + count_insert > 1) { if (count_delete != 0 && count_insert != 0) { // Factor out any common prefixies. commonlength = diff_commonPrefix(text_insert, text_delete); if (commonlength != 0) { if ((pointer - count_delete - count_insert) > 0 && diffs[pointer - count_delete - count_insert - 1].operation == Operation.equal) { final i = pointer - count_delete - count_insert - 1; diffs[i].text = diffs[i].text + text_insert.substring(0, commonlength); } else { diffs.insert(0, Diff(Operation.equal, text_insert.substring(0, commonlength))); pointer++; } text_insert = text_insert.substring(commonlength); text_delete = text_delete.substring(commonlength); } // Factor out any common suffixies. commonlength = diff_commonSuffix(text_insert, text_delete); if (commonlength != 0) { diffs[pointer].text = text_insert.substring(text_insert.length - commonlength) + diffs[pointer].text; text_insert = text_insert.substring(0, text_insert.length - commonlength); text_delete = text_delete.substring(0, text_delete.length - commonlength); } } // Delete the offending records and add the merged ones. pointer -= count_delete + count_insert; diffs.removeRange(pointer, pointer + count_delete + count_insert); if (text_delete.isNotEmpty) { diffs.insert(pointer, Diff(Operation.delete, text_delete)); pointer++; } if (text_insert.isNotEmpty) { diffs.insert(pointer, Diff(Operation.insert, text_insert)); pointer++; } pointer++; } else if (pointer != 0 && diffs[pointer - 1].operation == Operation.equal) { // Merge this equality with the previous one. diffs[pointer - 1].text = diffs[pointer - 1].text + diffs[pointer].text; diffs.removeAt(pointer); } else { pointer++; } count_insert = 0; count_delete = 0; text_delete = ''; text_insert = ''; break; } } if (diffs.last.text.isEmpty) { diffs.removeLast(); // Remove the dummy entry at the end. } // Second pass: look for single edits surrounded on both sides by equalities // which can be shifted sideways to eliminate an equality. // e.g: ABAC -> ABAC bool changes = false; pointer = 1; // Intentionally ignore the first and last element (don't need checking). while (pointer < diffs.length - 1) { if (diffs[pointer - 1].operation == Operation.equal && diffs[pointer + 1].operation == Operation.equal) { // This is a single edit surrounded by equalities. if (diffs[pointer].text.endsWith(diffs[pointer - 1].text)) { // Shift the edit over the previous equality. diffs[pointer].text = diffs[pointer - 1].text + diffs[pointer].text.substring(0, diffs[pointer].text.length - diffs[pointer - 1].text.length); diffs[pointer + 1].text = diffs[pointer - 1].text + diffs[pointer + 1].text; diffs.removeAt(pointer - 1); changes = true; } else if (diffs[pointer].text.startsWith(diffs[pointer + 1].text)) { // Shift the edit over the next equality. diffs[pointer - 1].text = diffs[pointer - 1].text + diffs[pointer + 1].text; diffs[pointer].text = diffs[pointer].text.substring(diffs[pointer + 1].text.length) + diffs[pointer + 1].text; diffs.removeAt(pointer + 1); changes = true; } } pointer++; } // If shifts were made, the diff needs reordering and another shift sweep. if (changes) { diff_cleanupMerge(diffs); } } /// loc is a location in text1, compute and return the equivalent location in /// text2. /// e.g. "The cat" vs "The big cat", 1->1, 5->8 /// [diffs] is a List of Diff objects. /// [loc] is the location within text1. /// Returns the location within text2. int diff_xIndex(List diffs, int loc) { int chars1 = 0; int chars2 = 0; int last_chars1 = 0; int last_chars2 = 0; Diff? lastDiff; for (Diff aDiff in diffs) { if (aDiff.operation != Operation.insert) { // Equality or deletion. chars1 += aDiff.text.length; } if (aDiff.operation != Operation.delete) { // Equality or insertion. chars2 += aDiff.text.length; } if (chars1 > loc) { // Overshot the location. lastDiff = aDiff; break; } last_chars1 = chars1; last_chars2 = chars2; } if (lastDiff != null && lastDiff.operation == Operation.delete) { // The location was deleted. return last_chars2; } // Add the remaining character length. return last_chars2 + (loc - last_chars1); } /// Convert a Diff list into a pretty HTML report. /// [diffs] is a List of Diff objects. /// Returns an HTML representation. String diff_prettyHtml(List diffs) { final html = StringBuffer(); for (Diff aDiff in diffs) { String text = aDiff.text.replaceAll('&', '&').replaceAll('<', '<').replaceAll('>', '>').replaceAll('\n', '¶
'); switch (aDiff.operation) { case Operation.insert: html.write(''); html.write(text); html.write(''); break; case Operation.delete: html.write(''); html.write(text); html.write(''); break; case Operation.equal: html.write(''); html.write(text); html.write(''); break; } } return html.toString(); } /// Compute and return the source text (all equalities and deletions). /// [diffs] is a List of Diff objects. /// Returns the source text. String diff_text1(List diffs) { final text = StringBuffer(); for (Diff aDiff in diffs) { if (aDiff.operation != Operation.insert) { text.write(aDiff.text); } } return text.toString(); } /// Compute and return the destination text (all equalities and insertions). /// [diffs] is a List of Diff objects. /// Returns the destination text. String diff_text2(List diffs) { final text = StringBuffer(); for (Diff aDiff in diffs) { if (aDiff.operation != Operation.delete) { text.write(aDiff.text); } } return text.toString(); } /// Compute the Levenshtein distance; the number of inserted, deleted or /// substituted characters. /// [diffs] is a List of Diff objects. /// Returns the number of changes. int diff_levenshtein(List diffs) { int levenshtein = 0; int insertions = 0; int deletions = 0; for (Diff aDiff in diffs) { switch (aDiff.operation) { case Operation.insert: insertions += aDiff.text.length; break; case Operation.delete: deletions += aDiff.text.length; break; case Operation.equal: // A deletion and an insertion is one substitution. levenshtein += max(insertions, deletions); insertions = 0; deletions = 0; break; } } levenshtein += max(insertions, deletions); return levenshtein; } /// Crush the diff into an encoded string which describes the operations /// required to transform text1 into text2. /// E.g. =3\t-2\t+ing -> Keep 3 chars, delete 2 chars, insert 'ing'. /// Operations are tab-separated. Inserted text is escaped using %xx notation. /// [diffs] is a List of Diff objects. /// Returns the delta text. String diff_toDelta(List diffs) { final text = StringBuffer(); for (Diff aDiff in diffs) { switch (aDiff.operation) { case Operation.insert: text.write('+'); text.write(Uri.encodeFull(aDiff.text)); text.write('\t'); break; case Operation.delete: text.write('-'); text.write(aDiff.text.length); text.write('\t'); break; case Operation.equal: text.write('='); text.write(aDiff.text.length); text.write('\t'); break; } } String delta = text.toString(); if (delta.isNotEmpty) { // Strip off trailing tab character. delta = delta.substring(0, delta.length - 1); } return delta.replaceAll('%20', ' '); } /// Given the original text1, and an encoded string which describes the /// operations required to transform text1 into text2, compute the full diff. /// [text1] is the source string for the diff. /// [delta] is the delta text. /// Returns a List of Diff objects or null if invalid. /// Throws ArgumentError if invalid input. List diff_fromDelta(String text1, String delta) { final diffs = []; int pointer = 0; // Cursor in text1 final tokens = delta.split('\t'); for (String token in tokens) { if (token.isEmpty) { // Blank tokens are ok (from a trailing \t). continue; } // Each token begins with a one character parameter which specifies the // operation of this token (delete, insert, equality). String param = token.substring(1); switch (token[0]) { case '+': // decode would change all "+" to " " param = param.replaceAll('+', '%2B'); try { param = Uri.decodeFull(param); } on ArgumentError { // Malformed URI sequence. throw ArgumentError('Illegal escape in diff_fromDelta: $param'); } diffs.add(Diff(Operation.insert, param)); break; case '-': // Fall through. case '=': int n; try { n = int.parse(param); } on FormatException { throw ArgumentError('Invalid number in diff_fromDelta: $param'); } if (n < 0) { throw ArgumentError('Negative number in diff_fromDelta: $param'); } String text; try { text = text1.substring(pointer, pointer += n); } on RangeError { throw ArgumentError('Delta length ($pointer)' ' larger than source text length (${text1.length}).'); } if (token[0] == '=') { diffs.add(Diff(Operation.equal, text)); } else { diffs.add(Diff(Operation.delete, text)); } break; default: // Anything else is an error. throw ArgumentError('Invalid diff operation in diff_fromDelta: ${token[0]}'); } } if (pointer != text1.length) { throw ArgumentError('Delta length ($pointer)' ' smaller than source text length (${text1.length}).'); } return diffs; } // MATCH FUNCTIONS /// Locate the best instance of 'pattern' in 'text' near 'loc'. /// Returns -1 if no match found. /// [text] is the text to search. /// [pattern] is the pattern to search for. /// [loc] is the location to search around. /// Returns the best match index or -1. int match_main(String? text, String? pattern, int loc) { // Check for null inputs. if (text == null || pattern == null) { throw ArgumentError('Null inputs. (match_main)'); } loc = max(0, min(loc, text.length)); if (text == pattern) { // Shortcut (potentially not guaranteed by the algorithm) return 0; } else if (text.isEmpty) { // Nothing to match. return -1; } else if (loc + pattern.length <= text.length && text.substring(loc, loc + pattern.length) == pattern) { // Perfect match at the perfect spot! (Includes case of null pattern) return loc; } else { // Do a fuzzy compare. return _match_bitap(text, pattern, loc); } } /// Locate the best instance of 'pattern' in 'text' near 'loc' using the /// Bitap algorithm. Returns -1 if no match found. /// [text] is the the text to search. /// [pattern] is the pattern to search for. /// [loc] is the location to search around. /// Returns the best match index or -1. int _match_bitap(String text, String pattern, int loc) { if (Match_MaxBits != 0 && pattern.length > Match_MaxBits) { throw Exception('Pattern too long for this application.'); } // Initialise the alphabet. Map s = _match_alphabet(pattern); // Highest score beyond which we give up. double score_threshold = Match_Threshold; // Is there a nearby exact match? (speedup) int best_loc = text.indexOf(pattern, loc); if (best_loc != -1) { score_threshold = min(_match_bitapScore(0, best_loc, loc, pattern), score_threshold); // What about in the other direction? (speedup) best_loc = text.lastIndexOf(pattern, loc + pattern.length); if (best_loc != -1) { score_threshold = min(_match_bitapScore(0, best_loc, loc, pattern), score_threshold); } } // Initialise the bit arrays. final matchmask = 1 << (pattern.length - 1); best_loc = -1; int bin_min, bin_mid; int bin_max = pattern.length + text.length; late List last_rd; for (int d = 0; d < pattern.length; d++) { // Scan for the best match; each iteration allows for one more error. // Run a binary search to determine how far from 'loc' we can stray at // this error level. bin_min = 0; bin_mid = bin_max; while (bin_min < bin_mid) { if (_match_bitapScore(d, loc + bin_mid, loc, pattern) <= score_threshold) { bin_min = bin_mid; } else { bin_max = bin_mid; } bin_mid = ((bin_max - bin_min) / 2 + bin_min).toInt(); } // Use the result from this iteration as the maximum for the next. bin_max = bin_mid; int start = max(1, loc - bin_mid + 1); int finish = min(loc + bin_mid, text.length) + pattern.length; final rd = List.filled(finish + 2, -1); rd[finish + 1] = (1 << d) - 1; for (int j = finish; j >= start; j--) { int charMatch; if (text.length <= j - 1 || !s.containsKey(text[j - 1])) { // Out of range. charMatch = 0; } else { charMatch = s[text[j - 1]]!; } if (d == 0) { // First pass: exact match. rd[j] = ((rd[j + 1] << 1) | 1) & charMatch; } else { // Subsequent passes: fuzzy match. rd[j] = ((rd[j + 1] << 1) | 1) & charMatch | (((last_rd[j + 1] | last_rd[j]) << 1) | 1) | last_rd[j + 1]; } if ((rd[j] & matchmask) != 0) { double score = _match_bitapScore(d, j - 1, loc, pattern); // This match will almost certainly be better than any existing // match. But check anyway. if (score <= score_threshold) { // Told you so. score_threshold = score; best_loc = j - 1; if (best_loc > loc) { // When passing loc, don't exceed our current distance from loc. start = max(1, 2 * loc - best_loc); } else { // Already passed loc, downhill from here on in. break; } } } } if (_match_bitapScore(d + 1, loc, loc, pattern) > score_threshold) { // No hope for a (better) match at greater error levels. break; } last_rd = rd; } return best_loc; } /// Hack to allow unit tests to call private method. Do not use. int test_match_bitap(String text, String pattern, int loc) { return _match_bitap(text, pattern, loc); } /// Compute and return the score for a match with e errors and x location. /// [e] is the number of errors in match. /// [x] is the location of match. /// [loc] is the expected location of match. /// [pattern] is the pattern being sought. /// Returns the overall score for match (0.0 = good, 1.0 = bad). double _match_bitapScore(int e, int x, int loc, String pattern) { final accuracy = e / pattern.length; final proximity = (loc - x).abs(); if (Match_Distance == 0) { // Dodge divide by zero error. return proximity == 0 ? accuracy : 1.0; } return accuracy + proximity / Match_Distance; } /// Initialise the alphabet for the Bitap algorithm. /// [pattern] is the the text to encode. /// Returns a Map of character locations. Map _match_alphabet(String pattern) { final s = HashMap(); for (int i = 0; i < pattern.length; i++) { s[pattern[i]] = 0; } for (int i = 0; i < pattern.length; i++) { s[pattern[i]] = s[pattern[i]]! | (1 << (pattern.length - i - 1)); } return s; } /// Hack to allow unit tests to call private method. Do not use. Map test_match_alphabet(String pattern) { return _match_alphabet(pattern); } }