aves/lib/utils/diff_match.dart

1478 lines
56 KiB
Dart

/*
* Diff Match and Patch
* Copyright 2018 The diff-match-patch Authors.
* https://github.com/google/diff-match-patch
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
/*
* Functions for diff, match and patch.
* Computes the difference between two texts to create a patch.
* Applies the patch onto another text, allowing for errors.
*
* @author fraser@google.com (Neil Fraser)
*/
// ignore_for_file: no_leading_underscores_for_local_identifiers
// ignore_for_file: non_constant_identifier_names
// ignore_for_file: unnecessary_this
import 'dart:collection';
import 'dart:math';
// adapted from Google's `Diff Match and Patch` Dart implementation
// cf https://github.com/google/diff-match-patch/tree/master/dart
/// Class representing one diff operation.
class Diff {
/// One of: Operation.insert, Operation.delete or Operation.equal.
Operation operation;
/// The text associated with this diff operation.
String text;
/// Constructor. Initializes the diff with the provided values.
/// [operation] is one of Operation.insert, Operation.delete or Operation.equal.
/// [text] is the text being applied.
Diff(this.operation, this.text);
/// Display a human-readable version of this Diff.
/// Returns a text version.
@override
String toString() {
String prettyText = this.text.replaceAll('\n', '\u00b6');
return 'Diff(${this.operation},"$prettyText")';
}
/// Is this Diff equivalent to another Diff?
/// [other] is another Diff to compare against.
/// Returns true or false.
@override
bool operator ==(Object other) => identical(this, other) || other is Diff && runtimeType == other.runtimeType && operation == other.operation && text == other.text;
/// Generate a uniquely identifiable hashcode for this Diff.
/// Returns numeric hashcode.
@override
int get hashCode => operation.hashCode ^ text.hashCode;
}
/// The data structure representing a diff is a List of Diff objects:
/// {Diff(Operation.delete, 'Hello'), Diff(Operation.insert, 'Goodbye'),
/// Diff(Operation.equal, ' world.')}
/// which means: delete 'Hello', add 'Goodbye' and keep ' world.'
enum Operation { delete, insert, equal }
/// Class containing the diff, match and patch methods.
/// Also contains the behaviour settings.
class DiffMatchPatch {
// Defaults.
// Set these on your diff_match_patch instance to override the defaults.
/// Number of seconds to map a diff before giving up (0 for infinity).
double Diff_Timeout = 1.0;
/// Cost of an empty edit operation in terms of edit characters.
int Diff_EditCost = 4;
/// At what point is no match declared (0.0 = perfection, 1.0 = very loose).
double Match_Threshold = 0.5;
/// How far to search for a match (0 = exact location, 1000+ = broad match).
/// A match this many characters away from the expected location will add
/// 1.0 to the score (0.0 is a perfect match).
int Match_Distance = 1000;
/// When deleting a large block of text (over ~64 characters), how close do
/// the contents have to be to match the expected contents. (0.0 = perfection,
/// 1.0 = very loose). Note that Match_Threshold controls how closely the
/// end points of a delete need to match.
double Patch_DeleteThreshold = 0.5;
/// Chunk size for context length.
int Patch_Margin = 4;
/// The number of bits in an int.
int Match_MaxBits = 32;
// DIFF FUNCTIONS
/// Find the differences between two texts. Simplifies the problem by
/// stripping any common prefix or suffix off the texts before diffing.
/// [text1] is the old string to be diffed.
/// [text2] is the new string to be diffed.
/// [checklines] is an optional speedup flag. If present and false, then don't
/// run a line-level diff first to identify the changed areas.
/// Defaults to true, which does a faster, slightly less optimal diff.
/// [deadline] is an optional time when the diff should be complete by. Used
/// internally for recursive calls. Users should set DiffTimeout instead.
/// Returns a List of Diff objects.
List<Diff> diff_main(String? text1, String? text2, [bool checklines = true, DateTime? deadline]) {
// Set a deadline by which time the diff must be complete.
if (deadline == null) {
deadline = DateTime.now();
if (Diff_Timeout <= 0) {
// One year should be sufficient for 'infinity'.
deadline = deadline.add(const Duration(days: 365));
} else {
deadline = deadline.add(Duration(milliseconds: (Diff_Timeout * 1000).toInt()));
}
}
// Check for null inputs.
if (text1 == null || text2 == null) {
throw ArgumentError('Null inputs. (diff_main)');
}
// Check for equality (speedup).
List<Diff> diffs;
if (text1 == text2) {
diffs = [];
if (text1.isNotEmpty) {
diffs.add(Diff(Operation.equal, text1));
}
return diffs;
}
// Trim off common prefix (speedup).
int commonlength = diff_commonPrefix(text1, text2);
String commonprefix = text1.substring(0, commonlength);
text1 = text1.substring(commonlength);
text2 = text2.substring(commonlength);
// Trim off common suffix (speedup).
commonlength = diff_commonSuffix(text1, text2);
String commonsuffix = text1.substring(text1.length - commonlength);
text1 = text1.substring(0, text1.length - commonlength);
text2 = text2.substring(0, text2.length - commonlength);
// Compute the diff on the middle block.
diffs = _diff_compute(text1, text2, checklines, deadline);
// Restore the prefix and suffix.
if (commonprefix.isNotEmpty) {
diffs.insert(0, Diff(Operation.equal, commonprefix));
}
if (commonsuffix.isNotEmpty) {
diffs.add(Diff(Operation.equal, commonsuffix));
}
diff_cleanupMerge(diffs);
return diffs;
}
/// Find the differences between two texts. Assumes that the texts do not
/// have any common prefix or suffix.
/// [text1] is the old string to be diffed.
/// [text2] is the new string to be diffed.
/// [checklines] is a speedup flag. If false, then don't run a
/// line-level diff first to identify the changed areas.
/// If true, then run a faster slightly less optimal diff.
/// [deadline] is the time when the diff should be complete by.
/// Returns a List of Diff objects.
List<Diff> _diff_compute(String text1, String text2, bool checklines, DateTime deadline) {
List<Diff> diffs = <Diff>[];
if (text1.isEmpty) {
// Just add some text (speedup).
diffs.add(Diff(Operation.insert, text2));
return diffs;
}
if (text2.isEmpty) {
// Just delete some text (speedup).
diffs.add(Diff(Operation.delete, text1));
return diffs;
}
String longtext = text1.length > text2.length ? text1 : text2;
String shorttext = text1.length > text2.length ? text2 : text1;
int i = longtext.indexOf(shorttext);
if (i != -1) {
// Shorter text is inside the longer text (speedup).
Operation op = (text1.length > text2.length) ? Operation.delete : Operation.insert;
diffs.add(Diff(op, longtext.substring(0, i)));
diffs.add(Diff(Operation.equal, shorttext));
diffs.add(Diff(op, longtext.substring(i + shorttext.length)));
return diffs;
}
if (shorttext.length == 1) {
// Single character string.
// After the previous speedup, the character can't be an equality.
diffs.add(Diff(Operation.delete, text1));
diffs.add(Diff(Operation.insert, text2));
return diffs;
}
// Check to see if the problem can be split in two.
final hm = _diff_halfMatch(text1, text2);
if (hm != null) {
// A half-match was found, sort out the return data.
final text1_a = hm[0];
final text1_b = hm[1];
final text2_a = hm[2];
final text2_b = hm[3];
final mid_common = hm[4];
// Send both pairs off for separate processing.
final diffs_a = diff_main(text1_a, text2_a, checklines, deadline);
final diffs_b = diff_main(text1_b, text2_b, checklines, deadline);
// Merge the results.
diffs = diffs_a;
diffs.add(Diff(Operation.equal, mid_common));
diffs.addAll(diffs_b);
return diffs;
}
if (checklines && text1.length > 100 && text2.length > 100) {
return _diff_lineMode(text1, text2, deadline);
}
return _diff_bisect(text1, text2, deadline);
}
/// Do a quick line-level diff on both strings, then rediff the parts for
/// greater accuracy.
/// This speedup can produce non-minimal diffs.
/// [text1] is the old string to be diffed.
/// [text2] is the new string to be diffed.
/// [deadline] is the time when the diff should be complete by.
/// Returns a List of Diff objects.
List<Diff> _diff_lineMode(String text1, String text2, DateTime deadline) {
// Scan the text on a line-by-line basis first.
final a = _diff_linesToChars(text1, text2);
text1 = a['chars1'];
text2 = a['chars2'];
final linearray = a['lineArray'];
final diffs = diff_main(text1, text2, false, deadline);
// Convert the diff back to original text.
_diff_charsToLines(diffs, linearray);
// Eliminate freak matches (e.g. blank lines)
diff_cleanupSemantic(diffs);
// Rediff any replacement blocks, this time character-by-character.
// Add a dummy entry at the end.
diffs.add(Diff(Operation.equal, ''));
int pointer = 0;
int count_delete = 0;
int count_insert = 0;
final text_delete = StringBuffer();
final text_insert = StringBuffer();
while (pointer < diffs.length) {
switch (diffs[pointer].operation) {
case Operation.insert:
count_insert++;
text_insert.write(diffs[pointer].text);
case Operation.delete:
count_delete++;
text_delete.write(diffs[pointer].text);
case Operation.equal:
// Upon reaching an equality, check for prior redundancies.
if (count_delete >= 1 && count_insert >= 1) {
// Delete the offending records and add the merged ones.
diffs.removeRange(pointer - count_delete - count_insert, pointer);
pointer = pointer - count_delete - count_insert;
final subDiff = diff_main(text_delete.toString(), text_insert.toString(), false, deadline);
for (int j = subDiff.length - 1; j >= 0; j--) {
diffs.insert(pointer, subDiff[j]);
}
pointer = pointer + subDiff.length;
}
count_insert = 0;
count_delete = 0;
text_delete.clear();
text_insert.clear();
}
pointer++;
}
diffs.removeLast(); // Remove the dummy entry at the end.
return diffs;
}
/// Find the 'middle snake' of a diff, split the problem in two
/// and return the recursively constructed diff.
/// See Myers 1986 paper: An O(ND) Difference Algorithm and Its Variations.
/// [text1] is the old string to be diffed.
/// [text2] is the new string to be diffed.
/// [deadline] is the time at which to bail if not yet complete.
/// Returns a List of Diff objects.
List<Diff> _diff_bisect(String text1, String text2, DateTime deadline) {
// Cache the text lengths to prevent multiple calls.
final text1_length = text1.length;
final text2_length = text2.length;
final max_d = (text1_length + text2_length + 1) ~/ 2;
final v_offset = max_d;
final v_length = 2 * max_d;
final v1 = List<int>.filled(v_length, -1);
final v2 = List<int>.filled(v_length, -1);
v1[v_offset + 1] = 0;
v2[v_offset + 1] = 0;
final delta = text1_length - text2_length;
// If the total number of characters is odd, then the front path will
// collide with the reverse path.
final front = (delta % 2 != 0);
// Offsets for start and end of k loop.
// Prevents mapping of space beyond the grid.
int k1start = 0;
int k1end = 0;
int k2start = 0;
int k2end = 0;
for (int d = 0; d < max_d; d++) {
// Bail out if deadline is reached.
if ((DateTime.now()).compareTo(deadline) == 1) {
break;
}
// Walk the front path one step.
for (int k1 = -d + k1start; k1 <= d - k1end; k1 += 2) {
int k1_offset = v_offset + k1;
int x1;
if (k1 == -d || k1 != d && v1[k1_offset - 1] < v1[k1_offset + 1]) {
x1 = v1[k1_offset + 1];
} else {
x1 = v1[k1_offset - 1] + 1;
}
int y1 = x1 - k1;
while (x1 < text1_length && y1 < text2_length && text1[x1] == text2[y1]) {
x1++;
y1++;
}
v1[k1_offset] = x1;
if (x1 > text1_length) {
// Ran off the right of the graph.
k1end += 2;
} else if (y1 > text2_length) {
// Ran off the bottom of the graph.
k1start += 2;
} else if (front) {
int k2_offset = v_offset + delta - k1;
if (k2_offset >= 0 && k2_offset < v_length && v2[k2_offset] != -1) {
// Mirror x2 onto top-left coordinate system.
int x2 = text1_length - v2[k2_offset];
if (x1 >= x2) {
// Overlap detected.
return _diff_bisectSplit(text1, text2, x1, y1, deadline);
}
}
}
}
// Walk the reverse path one step.
for (int k2 = -d + k2start; k2 <= d - k2end; k2 += 2) {
int k2_offset = v_offset + k2;
int x2;
if (k2 == -d || k2 != d && v2[k2_offset - 1] < v2[k2_offset + 1]) {
x2 = v2[k2_offset + 1];
} else {
x2 = v2[k2_offset - 1] + 1;
}
int y2 = x2 - k2;
while (x2 < text1_length && y2 < text2_length && text1[text1_length - x2 - 1] == text2[text2_length - y2 - 1]) {
x2++;
y2++;
}
v2[k2_offset] = x2;
if (x2 > text1_length) {
// Ran off the left of the graph.
k2end += 2;
} else if (y2 > text2_length) {
// Ran off the top of the graph.
k2start += 2;
} else if (!front) {
int k1_offset = v_offset + delta - k2;
if (k1_offset >= 0 && k1_offset < v_length && v1[k1_offset] != -1) {
int x1 = v1[k1_offset];
int y1 = v_offset + x1 - k1_offset;
// Mirror x2 onto top-left coordinate system.
x2 = text1_length - x2;
if (x1 >= x2) {
// Overlap detected.
return _diff_bisectSplit(text1, text2, x1, y1, deadline);
}
}
}
}
}
// Diff took too long and hit the deadline or
// number of diffs equals number of characters, no commonality at all.
return [Diff(Operation.delete, text1), Diff(Operation.insert, text2)];
}
/// Hack to allow unit tests to call private method. Do not use.
List<Diff> test_diff_bisect(String text1, String text2, DateTime deadline) {
return _diff_bisect(text1, text2, deadline);
}
/// Given the location of the 'middle snake', split the diff in two parts
/// and recurse.
/// [text1] is the old string to be diffed.
/// [text2] is the new string to be diffed.
/// [x] is the index of split point in text1.
/// [y] is the index of split point in text2.
/// [deadline] is the time at which to bail if not yet complete.
/// Returns a List of Diff objects.
List<Diff> _diff_bisectSplit(String text1, String text2, int x, int y, DateTime deadline) {
final text1a = text1.substring(0, x);
final text2a = text2.substring(0, y);
final text1b = text1.substring(x);
final text2b = text2.substring(y);
// Compute both diffs serially.
final diffs = diff_main(text1a, text2a, false, deadline);
final diffsb = diff_main(text1b, text2b, false, deadline);
diffs.addAll(diffsb);
return diffs;
}
/// Split two texts into a list of strings. Reduce the texts to a string of
/// hashes where each Unicode character represents one line.
/// [text1] is the first string.
/// [text2] is the second string.
/// Returns a Map containing the encoded text1, the encoded text2 and
/// the List of unique strings. The zeroth element of the List of
/// unique strings is intentionally blank.
Map<String, dynamic> _diff_linesToChars(String text1, String text2) {
final lineArray = <String>[];
final lineHash = HashMap<String, int>();
// e.g. linearray[4] == 'Hello\n'
// e.g. linehash['Hello\n'] == 4
// '\x00' is a valid character, but various debuggers don't like it.
// So we'll insert a junk entry to avoid generating a null character.
lineArray.add('');
// Allocate 2/3rds of the space for text1, the rest for text2.
String chars1 = _diff_linesToCharsMunge(text1, lineArray, lineHash, 40000);
String chars2 = _diff_linesToCharsMunge(text2, lineArray, lineHash, 65535);
return {'chars1': chars1, 'chars2': chars2, 'lineArray': lineArray};
}
/// Hack to allow unit tests to call private method. Do not use.
Map<String, dynamic> test_diff_linesToChars(String text1, String text2) {
return _diff_linesToChars(text1, text2);
}
/// Split a text into a list of strings. Reduce the texts to a string of
/// hashes where each Unicode character represents one line.
/// [text] is the string to encode.
/// [lineArray] is a List of unique strings.
/// [lineHash] is a Map of strings to indices.
/// [maxLines] is the maximum length for lineArray.
/// Returns an encoded string.
String _diff_linesToCharsMunge(String text, List<String> lineArray, Map<String, int> lineHash, int maxLines) {
int lineStart = 0;
int lineEnd = -1;
String line;
final chars = StringBuffer();
// Walk the text, pulling out a substring for each line.
// text.split('\n') would would temporarily double our memory footprint.
// Modifying text would create many large strings to garbage collect.
while (lineEnd < text.length - 1) {
lineEnd = text.indexOf('\n', lineStart);
if (lineEnd == -1) {
lineEnd = text.length - 1;
}
line = text.substring(lineStart, lineEnd + 1);
if (lineHash.containsKey(line)) {
chars.writeCharCode(lineHash[line]!);
} else {
if (lineArray.length == maxLines) {
// Bail out at 65535 because
// final chars1 = StringBuffer();
// chars1.writeCharCode(65536);
// chars1.toString().codeUnitAt(0) == 55296;
line = text.substring(lineStart);
lineEnd = text.length;
}
lineArray.add(line);
lineHash[line] = lineArray.length - 1;
chars.writeCharCode(lineArray.length - 1);
}
lineStart = lineEnd + 1;
}
return chars.toString();
}
/// Rehydrate the text in a diff from a string of line hashes to real lines of
/// text.
/// [diffs] is a List of Diff objects.
/// [lineArray] is a List of unique strings.
void _diff_charsToLines(List<Diff> diffs, List<String> lineArray) {
final text = StringBuffer();
for (Diff diff in diffs) {
for (int j = 0; j < diff.text.length; j++) {
text.write(lineArray[diff.text.codeUnitAt(j)]);
}
diff.text = text.toString();
text.clear();
}
}
/// Hack to allow unit tests to call private method. Do not use.
void test_diff_charsToLines(List<Diff> diffs, List<String> lineArray) {
_diff_charsToLines(diffs, lineArray);
}
/// Determine the common prefix of two strings
/// [text1] is the first string.
/// [text2] is the second string.
/// Returns the number of characters common to the start of each string.
int diff_commonPrefix(String text1, String text2) {
// TODO: Once Dart's performance stabilizes, determine if linear or binary
// search is better.
// Performance analysis: https://neil.fraser.name/news/2007/10/09/
final n = min(text1.length, text2.length);
for (int i = 0; i < n; i++) {
if (text1[i] != text2[i]) {
return i;
}
}
return n;
}
/// Determine the common suffix of two strings
/// [text1] is the first string.
/// [text2] is the second string.
/// Returns the number of characters common to the end of each string.
int diff_commonSuffix(String text1, String text2) {
// TODO: Once Dart's performance stabilizes, determine if linear or binary
// search is better.
// Performance analysis: https://neil.fraser.name/news/2007/10/09/
final text1_length = text1.length;
final text2_length = text2.length;
final n = min(text1_length, text2_length);
for (int i = 1; i <= n; i++) {
if (text1[text1_length - i] != text2[text2_length - i]) {
return i - 1;
}
}
return n;
}
/// Determine if the suffix of one string is the prefix of another.
/// [text1] is the first string.
/// [text2] is the second string.
/// Returns the number of characters common to the end of the first
/// string and the start of the second string.
int _diff_commonOverlap(String text1, String text2) {
// Eliminate the null case.
if (text1.isEmpty || text2.isEmpty) {
return 0;
}
// Cache the text lengths to prevent multiple calls.
final text1_length = text1.length;
final text2_length = text2.length;
// Truncate the longer string.
if (text1_length > text2_length) {
text1 = text1.substring(text1_length - text2_length);
} else if (text1_length < text2_length) {
text2 = text2.substring(0, text1_length);
}
final text_length = min(text1_length, text2_length);
// Quick check for the worst case.
if (text1 == text2) {
return text_length;
}
// Start by looking for a single character match
// and increase length until no match is found.
// Performance analysis: https://neil.fraser.name/news/2010/11/04/
int best = 0;
int length = 1;
while (true) {
String pattern = text1.substring(text_length - length);
int found = text2.indexOf(pattern);
if (found == -1) {
return best;
}
length += found;
if (found == 0 || text1.substring(text_length - length) == text2.substring(0, length)) {
best = length;
length++;
}
}
}
/// Hack to allow unit tests to call private method. Do not use.
int test_diff_commonOverlap(String text1, String text2) {
return _diff_commonOverlap(text1, text2);
}
/// Do the two texts share a substring which is at least half the length of
/// the longer text?
/// This speedup can produce non-minimal diffs.
/// [text1] is the first string.
/// [text2] is the second string.
/// Returns a five element List of Strings, containing the prefix of text1,
/// the suffix of text1, the prefix of text2, the suffix of text2 and the
/// common middle. Or null if there was no match.
List<String>? _diff_halfMatch(String text1, String text2) {
if (Diff_Timeout <= 0) {
// Don't risk returning a non-optimal diff if we have unlimited time.
return null;
}
final longtext = text1.length > text2.length ? text1 : text2;
final shorttext = text1.length > text2.length ? text2 : text1;
if (longtext.length < 4 || shorttext.length * 2 < longtext.length) {
return null; // Pointless.
}
// First check if the second quarter is the seed for a half-match.
final hm1 = _diff_halfMatchI(longtext, shorttext, ((longtext.length + 3) / 4).ceil().toInt());
// Check again based on the third quarter.
final hm2 = _diff_halfMatchI(longtext, shorttext, ((longtext.length + 1) / 2).ceil().toInt());
List<String> hm;
if (hm1 == null && hm2 == null) {
return null;
} else if (hm2 == null) {
hm = hm1!;
} else if (hm1 == null) {
hm = hm2;
} else {
// Both matched. Select the longest.
hm = hm1[4].length > hm2[4].length ? hm1 : hm2;
}
// A half-match was found, sort out the return data.
if (text1.length > text2.length) {
return hm;
//return [hm[0], hm[1], hm[2], hm[3], hm[4]];
} else {
return [hm[2], hm[3], hm[0], hm[1], hm[4]];
}
}
/// Hack to allow unit tests to call private method. Do not use.
List<String>? test_diff_halfMatch(String text1, String text2) {
return _diff_halfMatch(text1, text2);
}
/// Does a substring of shorttext exist within longtext such that the
/// substring is at least half the length of longtext?
/// [longtext] is the longer string.
/// [shorttext is the shorter string.
/// [i] Start index of quarter length substring within longtext.
/// Returns a five element String array, containing the prefix of longtext,
/// the suffix of longtext, the prefix of shorttext, the suffix of
/// shorttext and the common middle. Or null if there was no match.
List<String>? _diff_halfMatchI(String longtext, String shorttext, int i) {
// Start with a 1/4 length substring at position i as a seed.
final seed = longtext.substring(i, i + (longtext.length / 4).floor().toInt());
int j = -1;
String best_common = '';
String best_longtext_a = '', best_longtext_b = '';
String best_shorttext_a = '', best_shorttext_b = '';
while ((j = shorttext.indexOf(seed, j + 1)) != -1) {
int prefixLength = diff_commonPrefix(longtext.substring(i), shorttext.substring(j));
int suffixLength = diff_commonSuffix(longtext.substring(0, i), shorttext.substring(0, j));
if (best_common.length < suffixLength + prefixLength) {
best_common = shorttext.substring(j - suffixLength, j) + shorttext.substring(j, j + prefixLength);
best_longtext_a = longtext.substring(0, i - suffixLength);
best_longtext_b = longtext.substring(i + prefixLength);
best_shorttext_a = shorttext.substring(0, j - suffixLength);
best_shorttext_b = shorttext.substring(j + prefixLength);
}
}
if (best_common.length * 2 >= longtext.length) {
return [best_longtext_a, best_longtext_b, best_shorttext_a, best_shorttext_b, best_common];
} else {
return null;
}
}
/// Reduce the number of edits by eliminating semantically trivial equalities.
/// [diffs] is a List of Diff objects.
void diff_cleanupSemantic(List<Diff> diffs) {
bool changes = false;
// Stack of indices where equalities are found.
final equalities = <int>[];
// Always equal to diffs[equalities.last()].text
String? lastEquality;
int pointer = 0; // Index of current position.
// Number of characters that changed prior to the equality.
int length_insertions1 = 0;
int length_deletions1 = 0;
// Number of characters that changed after the equality.
int length_insertions2 = 0;
int length_deletions2 = 0;
while (pointer < diffs.length) {
if (diffs[pointer].operation == Operation.equal) {
// Equality found.
equalities.add(pointer);
length_insertions1 = length_insertions2;
length_deletions1 = length_deletions2;
length_insertions2 = 0;
length_deletions2 = 0;
lastEquality = diffs[pointer].text;
} else {
// An insertion or deletion.
if (diffs[pointer].operation == Operation.insert) {
length_insertions2 += diffs[pointer].text.length;
} else {
length_deletions2 += diffs[pointer].text.length;
}
// Eliminate an equality that is smaller or equal to the edits on both
// sides of it.
if (lastEquality != null && (lastEquality.length <= max(length_insertions1, length_deletions1)) && (lastEquality.length <= max(length_insertions2, length_deletions2))) {
// Duplicate record.
diffs.insert(equalities.last, Diff(Operation.delete, lastEquality));
// Change second copy to insert.
diffs[equalities.last + 1].operation = Operation.insert;
// Throw away the equality we just deleted.
equalities.removeLast();
// Throw away the previous equality (it needs to be reevaluated).
if (equalities.isNotEmpty) {
equalities.removeLast();
}
pointer = equalities.isEmpty ? -1 : equalities.last;
length_insertions1 = 0; // Reset the counters.
length_deletions1 = 0;
length_insertions2 = 0;
length_deletions2 = 0;
lastEquality = null;
changes = true;
}
}
pointer++;
}
// Normalize the diff.
if (changes) {
diff_cleanupMerge(diffs);
}
_diff_cleanupSemanticLossless(diffs);
// Find any overlaps between deletions and insertions.
// e.g: <del>abcxxx</del><ins>xxxdef</ins>
// -> <del>abc</del>xxx<ins>def</ins>
// e.g: <del>xxxabc</del><ins>defxxx</ins>
// -> <ins>def</ins>xxx<del>abc</del>
// Only extract an overlap if it is as big as the edit ahead or behind it.
pointer = 1;
while (pointer < diffs.length) {
if (diffs[pointer - 1].operation == Operation.delete && diffs[pointer].operation == Operation.insert) {
String deletion = diffs[pointer - 1].text;
String insertion = diffs[pointer].text;
int overlap_length1 = _diff_commonOverlap(deletion, insertion);
int overlap_length2 = _diff_commonOverlap(insertion, deletion);
if (overlap_length1 >= overlap_length2) {
if (overlap_length1 >= deletion.length / 2 || overlap_length1 >= insertion.length / 2) {
// Overlap found.
// Insert an equality and trim the surrounding edits.
diffs.insert(pointer, Diff(Operation.equal, insertion.substring(0, overlap_length1)));
diffs[pointer - 1].text = deletion.substring(0, deletion.length - overlap_length1);
diffs[pointer + 1].text = insertion.substring(overlap_length1);
pointer++;
}
} else {
if (overlap_length2 >= deletion.length / 2 || overlap_length2 >= insertion.length / 2) {
// Reverse overlap found.
// Insert an equality and swap and trim the surrounding edits.
diffs.insert(pointer, Diff(Operation.equal, deletion.substring(0, overlap_length2)));
diffs[pointer - 1] = Diff(Operation.insert, insertion.substring(0, insertion.length - overlap_length2));
diffs[pointer + 1] = Diff(Operation.delete, deletion.substring(overlap_length2));
pointer++;
}
}
pointer++;
}
pointer++;
}
}
/// Look for single edits surrounded on both sides by equalities
/// which can be shifted sideways to align the edit to a word boundary.
/// e.g: The c<ins>at c</ins>ame. -> The <ins>cat </ins>came.
/// [diffs] is a List of Diff objects.
void _diff_cleanupSemanticLossless(List<Diff> diffs) {
/// Given two strings, compute a score representing whether the internal
/// boundary falls on logical boundaries.
/// Scores range from 6 (best) to 0 (worst).
/// Closure, but does not reference any external variables.
/// [one] the first string.
/// [two] the second string.
/// Returns the score.
int _diff_cleanupSemanticScore(String one, String two) {
if (one.isEmpty || two.isEmpty) {
// Edges are the best.
return 6;
}
// Each port of this function behaves slightly differently due to
// subtle differences in each language's definition of things like
// 'whitespace'. Since this function's purpose is largely cosmetic,
// the choice has been made to use each language's native features
// rather than force total conformity.
String char1 = one[one.length - 1];
String char2 = two[0];
bool nonAlphaNumeric1 = char1.contains(nonAlphaNumericRegex_);
bool nonAlphaNumeric2 = char2.contains(nonAlphaNumericRegex_);
bool whitespace1 = nonAlphaNumeric1 && char1.contains(whitespaceRegex_);
bool whitespace2 = nonAlphaNumeric2 && char2.contains(whitespaceRegex_);
bool lineBreak1 = whitespace1 && char1.contains(linebreakRegex_);
bool lineBreak2 = whitespace2 && char2.contains(linebreakRegex_);
bool blankLine1 = lineBreak1 && one.contains(blanklineEndRegex_);
bool blankLine2 = lineBreak2 && two.contains(blanklineStartRegex_);
if (blankLine1 || blankLine2) {
// Five points for blank lines.
return 5;
} else if (lineBreak1 || lineBreak2) {
// Four points for line breaks.
return 4;
} else if (nonAlphaNumeric1 && !whitespace1 && whitespace2) {
// Three points for end of sentences.
return 3;
} else if (whitespace1 || whitespace2) {
// Two points for whitespace.
return 2;
} else if (nonAlphaNumeric1 || nonAlphaNumeric2) {
// One point for non-alphanumeric.
return 1;
}
return 0;
}
int pointer = 1;
// Intentionally ignore the first and last element (don't need checking).
while (pointer < diffs.length - 1) {
if (diffs[pointer - 1].operation == Operation.equal && diffs[pointer + 1].operation == Operation.equal) {
// This is a single edit surrounded by equalities.
String equality1 = diffs[pointer - 1].text;
String edit = diffs[pointer].text;
String equality2 = diffs[pointer + 1].text;
// First, shift the edit as far left as possible.
int commonOffset = diff_commonSuffix(equality1, edit);
if (commonOffset != 0) {
String commonString = edit.substring(edit.length - commonOffset);
equality1 = equality1.substring(0, equality1.length - commonOffset);
edit = commonString + edit.substring(0, edit.length - commonOffset);
equality2 = commonString + equality2;
}
// Second, step character by character right, looking for the best fit.
String bestEquality1 = equality1;
String bestEdit = edit;
String bestEquality2 = equality2;
int bestScore = _diff_cleanupSemanticScore(equality1, edit) + _diff_cleanupSemanticScore(edit, equality2);
while (edit.isNotEmpty && equality2.isNotEmpty && edit[0] == equality2[0]) {
equality1 = equality1 + edit[0];
edit = edit.substring(1) + equality2[0];
equality2 = equality2.substring(1);
int score = _diff_cleanupSemanticScore(equality1, edit) + _diff_cleanupSemanticScore(edit, equality2);
// The >= encourages trailing rather than leading whitespace on edits.
if (score >= bestScore) {
bestScore = score;
bestEquality1 = equality1;
bestEdit = edit;
bestEquality2 = equality2;
}
}
if (diffs[pointer - 1].text != bestEquality1) {
// We have an improvement, save it back to the diff.
if (bestEquality1.isNotEmpty) {
diffs[pointer - 1].text = bestEquality1;
} else {
diffs.removeAt(pointer - 1);
pointer--;
}
diffs[pointer].text = bestEdit;
if (bestEquality2.isNotEmpty) {
diffs[pointer + 1].text = bestEquality2;
} else {
diffs.removeAt(pointer + 1);
pointer--;
}
}
}
pointer++;
}
}
/// Hack to allow unit tests to call private method. Do not use.
void test_diff_cleanupSemanticLossless(List<Diff> diffs) {
_diff_cleanupSemanticLossless(diffs);
}
// Define some regex patterns for matching boundaries.
RegExp nonAlphaNumericRegex_ = RegExp(r'[^a-zA-Z0-9]');
RegExp whitespaceRegex_ = RegExp(r'\s');
RegExp linebreakRegex_ = RegExp(r'[\r\n]');
RegExp blanklineEndRegex_ = RegExp(r'\n\r?\n$');
RegExp blanklineStartRegex_ = RegExp(r'^\r?\n\r?\n');
/// Reduce the number of edits by eliminating operationally trivial equalities.
/// [diffs] is a List of Diff objects.
void diff_cleanupEfficiency(List<Diff> diffs) {
bool changes = false;
// Stack of indices where equalities are found.
final equalities = <int>[];
// Always equal to diffs[equalities.last()].text
String? lastEquality;
int pointer = 0; // Index of current position.
// Is there an insertion operation before the last equality.
bool pre_ins = false;
// Is there a deletion operation before the last equality.
bool pre_del = false;
// Is there an insertion operation after the last equality.
bool post_ins = false;
// Is there a deletion operation after the last equality.
bool post_del = false;
while (pointer < diffs.length) {
if (diffs[pointer].operation == Operation.equal) {
// Equality found.
if (diffs[pointer].text.length < Diff_EditCost && (post_ins || post_del)) {
// Candidate found.
equalities.add(pointer);
pre_ins = post_ins;
pre_del = post_del;
lastEquality = diffs[pointer].text;
} else {
// Not a candidate, and can never become one.
equalities.clear();
lastEquality = null;
}
post_ins = post_del = false;
} else {
// An insertion or deletion.
if (diffs[pointer].operation == Operation.delete) {
post_del = true;
} else {
post_ins = true;
}
/*
* Five types to be split:
* <ins>A</ins><del>B</del>XY<ins>C</ins><del>D</del>
* <ins>A</ins>X<ins>C</ins><del>D</del>
* <ins>A</ins><del>B</del>X<ins>C</ins>
* <ins>A</del>X<ins>C</ins><del>D</del>
* <ins>A</ins><del>B</del>X<del>C</del>
*/
if (lastEquality != null && ((pre_ins && pre_del && post_ins && post_del) || ((lastEquality.length < Diff_EditCost / 2) && ((pre_ins ? 1 : 0) + (pre_del ? 1 : 0) + (post_ins ? 1 : 0) + (post_del ? 1 : 0)) == 3))) {
// Duplicate record.
diffs.insert(equalities.last, Diff(Operation.delete, lastEquality));
// Change second copy to insert.
diffs[equalities.last + 1].operation = Operation.insert;
equalities.removeLast(); // Throw away the equality we just deleted.
lastEquality = null;
if (pre_ins && pre_del) {
// No changes made which could affect previous entry, keep going.
post_ins = post_del = true;
equalities.clear();
} else {
if (equalities.isNotEmpty) {
equalities.removeLast();
}
pointer = equalities.isEmpty ? -1 : equalities.last;
post_ins = post_del = false;
}
changes = true;
}
}
pointer++;
}
if (changes) {
diff_cleanupMerge(diffs);
}
}
/// Reorder and merge like edit sections. Merge equalities.
/// Any edit section can move as long as it doesn't cross an equality.
/// [diffs] is a List of Diff objects.
void diff_cleanupMerge(List<Diff> diffs) {
diffs.add(Diff(Operation.equal, '')); // Add a dummy entry at the end.
int pointer = 0;
int count_delete = 0;
int count_insert = 0;
String text_delete = '';
String text_insert = '';
int commonlength;
while (pointer < diffs.length) {
switch (diffs[pointer].operation) {
case Operation.insert:
count_insert++;
text_insert += diffs[pointer].text;
pointer++;
case Operation.delete:
count_delete++;
text_delete += diffs[pointer].text;
pointer++;
case Operation.equal:
// Upon reaching an equality, check for prior redundancies.
if (count_delete + count_insert > 1) {
if (count_delete != 0 && count_insert != 0) {
// Factor out any common prefixies.
commonlength = diff_commonPrefix(text_insert, text_delete);
if (commonlength != 0) {
if ((pointer - count_delete - count_insert) > 0 && diffs[pointer - count_delete - count_insert - 1].operation == Operation.equal) {
final i = pointer - count_delete - count_insert - 1;
diffs[i].text = diffs[i].text + text_insert.substring(0, commonlength);
} else {
diffs.insert(0, Diff(Operation.equal, text_insert.substring(0, commonlength)));
pointer++;
}
text_insert = text_insert.substring(commonlength);
text_delete = text_delete.substring(commonlength);
}
// Factor out any common suffixies.
commonlength = diff_commonSuffix(text_insert, text_delete);
if (commonlength != 0) {
diffs[pointer].text = text_insert.substring(text_insert.length - commonlength) + diffs[pointer].text;
text_insert = text_insert.substring(0, text_insert.length - commonlength);
text_delete = text_delete.substring(0, text_delete.length - commonlength);
}
}
// Delete the offending records and add the merged ones.
pointer -= count_delete + count_insert;
diffs.removeRange(pointer, pointer + count_delete + count_insert);
if (text_delete.isNotEmpty) {
diffs.insert(pointer, Diff(Operation.delete, text_delete));
pointer++;
}
if (text_insert.isNotEmpty) {
diffs.insert(pointer, Diff(Operation.insert, text_insert));
pointer++;
}
pointer++;
} else if (pointer != 0 && diffs[pointer - 1].operation == Operation.equal) {
// Merge this equality with the previous one.
diffs[pointer - 1].text = diffs[pointer - 1].text + diffs[pointer].text;
diffs.removeAt(pointer);
} else {
pointer++;
}
count_insert = 0;
count_delete = 0;
text_delete = '';
text_insert = '';
}
}
if (diffs.last.text.isEmpty) {
diffs.removeLast(); // Remove the dummy entry at the end.
}
// Second pass: look for single edits surrounded on both sides by equalities
// which can be shifted sideways to eliminate an equality.
// e.g: A<ins>BA</ins>C -> <ins>AB</ins>AC
bool changes = false;
pointer = 1;
// Intentionally ignore the first and last element (don't need checking).
while (pointer < diffs.length - 1) {
if (diffs[pointer - 1].operation == Operation.equal && diffs[pointer + 1].operation == Operation.equal) {
// This is a single edit surrounded by equalities.
if (diffs[pointer].text.endsWith(diffs[pointer - 1].text)) {
// Shift the edit over the previous equality.
diffs[pointer].text = diffs[pointer - 1].text + diffs[pointer].text.substring(0, diffs[pointer].text.length - diffs[pointer - 1].text.length);
diffs[pointer + 1].text = diffs[pointer - 1].text + diffs[pointer + 1].text;
diffs.removeAt(pointer - 1);
changes = true;
} else if (diffs[pointer].text.startsWith(diffs[pointer + 1].text)) {
// Shift the edit over the next equality.
diffs[pointer - 1].text = diffs[pointer - 1].text + diffs[pointer + 1].text;
diffs[pointer].text = diffs[pointer].text.substring(diffs[pointer + 1].text.length) + diffs[pointer + 1].text;
diffs.removeAt(pointer + 1);
changes = true;
}
}
pointer++;
}
// If shifts were made, the diff needs reordering and another shift sweep.
if (changes) {
diff_cleanupMerge(diffs);
}
}
/// loc is a location in text1, compute and return the equivalent location in
/// text2.
/// e.g. "The cat" vs "The big cat", 1->1, 5->8
/// [diffs] is a List of Diff objects.
/// [loc] is the location within text1.
/// Returns the location within text2.
int diff_xIndex(List<Diff> diffs, int loc) {
int chars1 = 0;
int chars2 = 0;
int last_chars1 = 0;
int last_chars2 = 0;
Diff? lastDiff;
for (Diff aDiff in diffs) {
if (aDiff.operation != Operation.insert) {
// Equality or deletion.
chars1 += aDiff.text.length;
}
if (aDiff.operation != Operation.delete) {
// Equality or insertion.
chars2 += aDiff.text.length;
}
if (chars1 > loc) {
// Overshot the location.
lastDiff = aDiff;
break;
}
last_chars1 = chars1;
last_chars2 = chars2;
}
if (lastDiff != null && lastDiff.operation == Operation.delete) {
// The location was deleted.
return last_chars2;
}
// Add the remaining character length.
return last_chars2 + (loc - last_chars1);
}
/// Convert a Diff list into a pretty HTML report.
/// [diffs] is a List of Diff objects.
/// Returns an HTML representation.
String diff_prettyHtml(List<Diff> diffs) {
final html = StringBuffer();
for (Diff aDiff in diffs) {
String text = aDiff.text.replaceAll('&', '&amp;').replaceAll('<', '&lt;').replaceAll('>', '&gt;').replaceAll('\n', '&para;<br>');
switch (aDiff.operation) {
case Operation.insert:
html.write('<ins style="background:#e6ffe6;">');
html.write(text);
html.write('</ins>');
case Operation.delete:
html.write('<del style="background:#ffe6e6;">');
html.write(text);
html.write('</del>');
case Operation.equal:
html.write('<span>');
html.write(text);
html.write('</span>');
}
}
return html.toString();
}
/// Compute and return the source text (all equalities and deletions).
/// [diffs] is a List of Diff objects.
/// Returns the source text.
String diff_text1(List<Diff> diffs) {
final text = StringBuffer();
for (Diff aDiff in diffs) {
if (aDiff.operation != Operation.insert) {
text.write(aDiff.text);
}
}
return text.toString();
}
/// Compute and return the destination text (all equalities and insertions).
/// [diffs] is a List of Diff objects.
/// Returns the destination text.
String diff_text2(List<Diff> diffs) {
final text = StringBuffer();
for (Diff aDiff in diffs) {
if (aDiff.operation != Operation.delete) {
text.write(aDiff.text);
}
}
return text.toString();
}
/// Compute the Levenshtein distance; the number of inserted, deleted or
/// substituted characters.
/// [diffs] is a List of Diff objects.
/// Returns the number of changes.
int diff_levenshtein(List<Diff> diffs) {
int levenshtein = 0;
int insertions = 0;
int deletions = 0;
for (Diff aDiff in diffs) {
switch (aDiff.operation) {
case Operation.insert:
insertions += aDiff.text.length;
case Operation.delete:
deletions += aDiff.text.length;
case Operation.equal:
// A deletion and an insertion is one substitution.
levenshtein += max(insertions, deletions);
insertions = 0;
deletions = 0;
}
}
levenshtein += max(insertions, deletions);
return levenshtein;
}
/// Crush the diff into an encoded string which describes the operations
/// required to transform text1 into text2.
/// E.g. =3\t-2\t+ing -> Keep 3 chars, delete 2 chars, insert 'ing'.
/// Operations are tab-separated. Inserted text is escaped using %xx notation.
/// [diffs] is a List of Diff objects.
/// Returns the delta text.
String diff_toDelta(List<Diff> diffs) {
final text = StringBuffer();
for (Diff aDiff in diffs) {
switch (aDiff.operation) {
case Operation.insert:
text.write('+');
text.write(Uri.encodeFull(aDiff.text));
text.write('\t');
case Operation.delete:
text.write('-');
text.write(aDiff.text.length);
text.write('\t');
case Operation.equal:
text.write('=');
text.write(aDiff.text.length);
text.write('\t');
}
}
String delta = text.toString();
if (delta.isNotEmpty) {
// Strip off trailing tab character.
delta = delta.substring(0, delta.length - 1);
}
return delta.replaceAll('%20', ' ');
}
/// Given the original text1, and an encoded string which describes the
/// operations required to transform text1 into text2, compute the full diff.
/// [text1] is the source string for the diff.
/// [delta] is the delta text.
/// Returns a List of Diff objects or null if invalid.
/// Throws ArgumentError if invalid input.
List<Diff> diff_fromDelta(String text1, String delta) {
final diffs = <Diff>[];
int pointer = 0; // Cursor in text1
final tokens = delta.split('\t');
for (String token in tokens) {
if (token.isEmpty) {
// Blank tokens are ok (from a trailing \t).
continue;
}
// Each token begins with a one character parameter which specifies the
// operation of this token (delete, insert, equality).
String param = token.substring(1);
switch (token[0]) {
case '+':
// decode would change all "+" to " "
param = param.replaceAll('+', '%2B');
try {
param = Uri.decodeFull(param);
} on ArgumentError {
// Malformed URI sequence.
throw ArgumentError('Illegal escape in diff_fromDelta: $param');
}
diffs.add(Diff(Operation.insert, param));
case '-':
// Fall through.
case '=':
int n;
try {
n = int.parse(param);
} on FormatException {
throw ArgumentError('Invalid number in diff_fromDelta: $param');
}
if (n < 0) {
throw ArgumentError('Negative number in diff_fromDelta: $param');
}
String text;
try {
text = text1.substring(pointer, pointer += n);
} on RangeError {
throw ArgumentError('Delta length ($pointer)'
' larger than source text length (${text1.length}).');
}
if (token[0] == '=') {
diffs.add(Diff(Operation.equal, text));
} else {
diffs.add(Diff(Operation.delete, text));
}
default:
// Anything else is an error.
throw ArgumentError('Invalid diff operation in diff_fromDelta: ${token[0]}');
}
}
if (pointer != text1.length) {
throw ArgumentError('Delta length ($pointer)'
' smaller than source text length (${text1.length}).');
}
return diffs;
}
// MATCH FUNCTIONS
/// Locate the best instance of 'pattern' in 'text' near 'loc'.
/// Returns -1 if no match found.
/// [text] is the text to search.
/// [pattern] is the pattern to search for.
/// [loc] is the location to search around.
/// Returns the best match index or -1.
int match_main(String? text, String? pattern, int loc) {
// Check for null inputs.
if (text == null || pattern == null) {
throw ArgumentError('Null inputs. (match_main)');
}
loc = max(0, min(loc, text.length));
if (text == pattern) {
// Shortcut (potentially not guaranteed by the algorithm)
return 0;
} else if (text.isEmpty) {
// Nothing to match.
return -1;
} else if (loc + pattern.length <= text.length && text.substring(loc, loc + pattern.length) == pattern) {
// Perfect match at the perfect spot! (Includes case of null pattern)
return loc;
} else {
// Do a fuzzy compare.
return _match_bitap(text, pattern, loc);
}
}
/// Locate the best instance of 'pattern' in 'text' near 'loc' using the
/// Bitap algorithm. Returns -1 if no match found.
/// [text] is the the text to search.
/// [pattern] is the pattern to search for.
/// [loc] is the location to search around.
/// Returns the best match index or -1.
int _match_bitap(String text, String pattern, int loc) {
if (Match_MaxBits != 0 && pattern.length > Match_MaxBits) {
throw Exception('Pattern too long for this application.');
}
// Initialise the alphabet.
Map<String, int> s = _match_alphabet(pattern);
// Highest score beyond which we give up.
double score_threshold = Match_Threshold;
// Is there a nearby exact match? (speedup)
int best_loc = text.indexOf(pattern, loc);
if (best_loc != -1) {
score_threshold = min(_match_bitapScore(0, best_loc, loc, pattern), score_threshold);
// What about in the other direction? (speedup)
best_loc = text.lastIndexOf(pattern, loc + pattern.length);
if (best_loc != -1) {
score_threshold = min(_match_bitapScore(0, best_loc, loc, pattern), score_threshold);
}
}
// Initialise the bit arrays.
final matchmask = 1 << (pattern.length - 1);
best_loc = -1;
int bin_min, bin_mid;
int bin_max = pattern.length + text.length;
late List<int> last_rd;
for (int d = 0; d < pattern.length; d++) {
// Scan for the best match; each iteration allows for one more error.
// Run a binary search to determine how far from 'loc' we can stray at
// this error level.
bin_min = 0;
bin_mid = bin_max;
while (bin_min < bin_mid) {
if (_match_bitapScore(d, loc + bin_mid, loc, pattern) <= score_threshold) {
bin_min = bin_mid;
} else {
bin_max = bin_mid;
}
bin_mid = ((bin_max - bin_min) / 2 + bin_min).toInt();
}
// Use the result from this iteration as the maximum for the next.
bin_max = bin_mid;
int start = max(1, loc - bin_mid + 1);
int finish = min(loc + bin_mid, text.length) + pattern.length;
final rd = List<int>.filled(finish + 2, -1);
rd[finish + 1] = (1 << d) - 1;
for (int j = finish; j >= start; j--) {
int charMatch;
if (text.length <= j - 1 || !s.containsKey(text[j - 1])) {
// Out of range.
charMatch = 0;
} else {
charMatch = s[text[j - 1]]!;
}
if (d == 0) {
// First pass: exact match.
rd[j] = ((rd[j + 1] << 1) | 1) & charMatch;
} else {
// Subsequent passes: fuzzy match.
rd[j] = ((rd[j + 1] << 1) | 1) & charMatch | (((last_rd[j + 1] | last_rd[j]) << 1) | 1) | last_rd[j + 1];
}
if ((rd[j] & matchmask) != 0) {
double score = _match_bitapScore(d, j - 1, loc, pattern);
// This match will almost certainly be better than any existing
// match. But check anyway.
if (score <= score_threshold) {
// Told you so.
score_threshold = score;
best_loc = j - 1;
if (best_loc > loc) {
// When passing loc, don't exceed our current distance from loc.
start = max(1, 2 * loc - best_loc);
} else {
// Already passed loc, downhill from here on in.
break;
}
}
}
}
if (_match_bitapScore(d + 1, loc, loc, pattern) > score_threshold) {
// No hope for a (better) match at greater error levels.
break;
}
last_rd = rd;
}
return best_loc;
}
/// Hack to allow unit tests to call private method. Do not use.
int test_match_bitap(String text, String pattern, int loc) {
return _match_bitap(text, pattern, loc);
}
/// Compute and return the score for a match with e errors and x location.
/// [e] is the number of errors in match.
/// [x] is the location of match.
/// [loc] is the expected location of match.
/// [pattern] is the pattern being sought.
/// Returns the overall score for match (0.0 = good, 1.0 = bad).
double _match_bitapScore(int e, int x, int loc, String pattern) {
final accuracy = e / pattern.length;
final proximity = (loc - x).abs();
if (Match_Distance == 0) {
// Dodge divide by zero error.
return proximity == 0 ? accuracy : 1.0;
}
return accuracy + proximity / Match_Distance;
}
/// Initialise the alphabet for the Bitap algorithm.
/// [pattern] is the the text to encode.
/// Returns a Map of character locations.
Map<String, int> _match_alphabet(String pattern) {
final s = HashMap<String, int>();
for (int i = 0; i < pattern.length; i++) {
s[pattern[i]] = 0;
}
for (int i = 0; i < pattern.length; i++) {
s[pattern[i]] = s[pattern[i]]! | (1 << (pattern.length - i - 1));
}
return s;
}
/// Hack to allow unit tests to call private method. Do not use.
Map<String, int> test_match_alphabet(String pattern) {
return _match_alphabet(pattern);
}
}