Implement a cache for the cosine computation in CheapRuler.
This commit is contained in:
parent
665b7096e8
commit
c78b56645c
5 changed files with 107 additions and 48 deletions
|
@ -2,7 +2,7 @@ package btools.router;
|
|||
|
||||
import btools.mapaccess.OsmNode;
|
||||
import btools.mapaccess.OsmPos;
|
||||
import btools.util.CheapRuler;
|
||||
import btools.util.CheapRulerSingleton;
|
||||
|
||||
import java.io.DataInput;
|
||||
import java.io.DataOutput;
|
||||
|
@ -78,7 +78,8 @@ public class OsmPathElement implements OsmPos
|
|||
|
||||
public final int calcDistance( OsmPos p )
|
||||
{
|
||||
return (int)(CheapRuler.distance(ilon, ilat, p.getILon(), p.getILat()) + 1.0 );
|
||||
CheapRulerSingleton cr = CheapRulerSingleton.getInstance();
|
||||
return (int)(cr.distance(ilon, ilat, p.getILon(), p.getILat()) + 1.0 );
|
||||
}
|
||||
|
||||
public OsmPathElement origin;
|
||||
|
|
|
@ -9,7 +9,7 @@ import btools.codec.MicroCache;
|
|||
import btools.codec.MicroCache2;
|
||||
import btools.expressions.BExpressionContextWay;
|
||||
import btools.util.ByteArrayUnifier;
|
||||
import btools.util.CheapRuler;
|
||||
import btools.util.CheapRulerSingleton;
|
||||
import btools.util.IByteArrayUnifier;
|
||||
|
||||
public class OsmNode extends OsmLink implements OsmPos
|
||||
|
@ -103,7 +103,8 @@ public class OsmNode extends OsmLink implements OsmPos
|
|||
|
||||
public final int calcDistance( OsmPos p )
|
||||
{
|
||||
return (int) (CheapRuler.distance(ilon, ilat, p.getILon(), p.getILat()) + 1.0);
|
||||
CheapRulerSingleton cr = CheapRulerSingleton.getInstance();
|
||||
return (int) (cr.distance(ilon, ilat, p.getILon(), p.getILat()) + 1.0);
|
||||
}
|
||||
|
||||
public String toString()
|
||||
|
|
|
@ -6,7 +6,7 @@
|
|||
package btools.memrouter;
|
||||
|
||||
import btools.mapaccess.OsmPos;
|
||||
import btools.util.CheapRuler;
|
||||
import btools.util.CheapRulerSingleton;
|
||||
|
||||
public class OsmNodeP extends OsmLinkP implements Comparable<OsmNodeP>, OsmPos
|
||||
{
|
||||
|
@ -103,7 +103,8 @@ public class OsmNodeP extends OsmLinkP implements Comparable<OsmNodeP>, OsmPos
|
|||
@Override
|
||||
public int calcDistance( OsmPos p )
|
||||
{
|
||||
return (int)(CheapRuler.distance(ilon, ilat, p.getILon(), p.getILat()) + 1.0 );
|
||||
CheapRulerSingleton cr = CheapRulerSingleton.getInstance();
|
||||
return (int)(cr.distance(ilon, ilat, p.getILon(), p.getILat()) + 1.0 );
|
||||
}
|
||||
|
||||
@Override
|
||||
|
|
|
@ -1,42 +0,0 @@
|
|||
package btools.util;
|
||||
|
||||
public final class CheapRuler {
|
||||
/**
|
||||
* Cheap-Ruler Java implementation
|
||||
* See
|
||||
* https://blog.mapbox.com/fast-geodesic-approximations-with-cheap-ruler-106f229ad016
|
||||
* for more details.
|
||||
*
|
||||
* Original code is at https://github.com/mapbox/cheap-ruler under ISC license.
|
||||
*/
|
||||
static int KILOMETERS_TO_METERS = 1000;
|
||||
static double ILATLNG_TO_LATLNG = 1e-6;
|
||||
static double DEG_TO_RAD = Math.PI / 180.;
|
||||
|
||||
/*
|
||||
* @param ilon1 Integer longitude for the start point. this is (longitude in degrees + 180) * 1e6.
|
||||
* @param ilat1 Integer latitude for the start point, this is (latitude + 90) * 1e6.
|
||||
* @param ilon2 Integer longitude for the end point, this is (longitude + 180) * 1e6.
|
||||
* @param ilat2 Integer latitude for the end point, this is (latitude + 90) * 1e6.
|
||||
*
|
||||
* @note Integer longitude is ((longitude in degrees) + 180) * 1e6.
|
||||
* Integer latitude is ((latitude in degrees) + 90) * 1e6.
|
||||
*/
|
||||
static public double distance(int ilon1, int ilat1, int ilon2, int ilat2) {
|
||||
double lat1 = ilat1 * ILATLNG_TO_LATLNG - 90.; // Real latitude, in degrees
|
||||
double cos = Math.cos(lat1 * DEG_TO_RAD);
|
||||
double cos2 = 2 * cos * cos - 1;
|
||||
double cos3 = 2 * cos * cos2 - cos;
|
||||
double cos4 = 2 * cos * cos3 - cos2;
|
||||
double cos5 = 2 * cos * cos4 - cos3;
|
||||
|
||||
// Multipliers for converting integer longitude and latitude into distance
|
||||
// (http://1.usa.gov/1Wb1bv7)
|
||||
double kx = (111.41513 * cos - 0.09455 * cos3 + 0.00012 * cos5) * ILATLNG_TO_LATLNG * KILOMETERS_TO_METERS;
|
||||
double ky = (111.13209 - 0.56605 * cos2 + 0.0012 * cos4) * ILATLNG_TO_LATLNG * KILOMETERS_TO_METERS;
|
||||
|
||||
double dlat = (ilat1 - ilat2) * ky;
|
||||
double dlon = (ilon1 - ilon2) * kx;
|
||||
return Math.sqrt(dlat * dlat + dlon * dlon); // in m
|
||||
}
|
||||
}
|
|
@ -0,0 +1,98 @@
|
|||
package btools.util;
|
||||
|
||||
public final class CheapRulerSingleton {
|
||||
/**
|
||||
* Cheap-Ruler Java implementation
|
||||
* See
|
||||
* https://blog.mapbox.com/fast-geodesic-approximations-with-cheap-ruler-106f229ad016
|
||||
* for more details.
|
||||
*
|
||||
* Original code is at https://github.com/mapbox/cheap-ruler under ISC license.
|
||||
*
|
||||
* This is implemented as a Singleton to have a unique cache for the cosine
|
||||
* values across all the code.
|
||||
*/
|
||||
private static volatile CheapRulerSingleton instance = null;
|
||||
|
||||
// Conversion constants
|
||||
private final static double ILATLNG_TO_LATLNG = 1e-6; // From integer to degrees
|
||||
private final static int KILOMETERS_TO_METERS = 1000;
|
||||
private final static double DEG_TO_RAD = Math.PI / 180.;
|
||||
|
||||
// Cosine cache constants
|
||||
private final static int COS_CACHE_LENGTH = 8192;
|
||||
private final static double COS_CACHE_MAX_DEGREES = 90.0;
|
||||
// COS_CACHE_LENGTH cached values between 0 and COS_CACHE_MAX_DEGREES degrees.
|
||||
double[] COS_CACHE = new double[COS_CACHE_LENGTH];
|
||||
|
||||
/**
|
||||
* Helper to build the cache of cosine values.
|
||||
*/
|
||||
private void buildCosCache() {
|
||||
double increment = DEG_TO_RAD * COS_CACHE_MAX_DEGREES / COS_CACHE_LENGTH;
|
||||
for (int i = 0; i < COS_CACHE_LENGTH; i++) {
|
||||
COS_CACHE[i] = Math.cos(i * increment);
|
||||
}
|
||||
}
|
||||
|
||||
private CheapRulerSingleton() {
|
||||
super();
|
||||
// Build the cache of cosine values.
|
||||
buildCosCache();
|
||||
}
|
||||
|
||||
/**
|
||||
* Get an instance of this singleton class.
|
||||
*/
|
||||
public final static CheapRulerSingleton getInstance() {
|
||||
if (CheapRulerSingleton.instance == null) {
|
||||
synchronized(CheapRulerSingleton.class) {
|
||||
if (CheapRulerSingleton.instance == null) {
|
||||
CheapRulerSingleton.instance = new CheapRulerSingleton();
|
||||
}
|
||||
}
|
||||
}
|
||||
return CheapRulerSingleton.instance;
|
||||
}
|
||||
|
||||
/**
|
||||
* Helper to compute the cosine of an integer latitude.
|
||||
*/
|
||||
private double cosLat(int ilat) {
|
||||
double latDegrees = ilat * ILATLNG_TO_LATLNG;
|
||||
if (ilat > 90000000) {
|
||||
// Use the symmetry of the cosine.
|
||||
latDegrees -= 90;
|
||||
}
|
||||
return COS_CACHE[(int) (latDegrees * COS_CACHE_LENGTH / COS_CACHE_MAX_DEGREES)];
|
||||
}
|
||||
|
||||
/**
|
||||
* Compute the distance (in meters) between two points represented by their
|
||||
* (integer) latitude and longitude.
|
||||
*
|
||||
* @param ilon1 Integer longitude for the start point. this is (longitude in degrees + 180) * 1e6.
|
||||
* @param ilat1 Integer latitude for the start point, this is (latitude + 90) * 1e6.
|
||||
* @param ilon2 Integer longitude for the end point, this is (longitude + 180) * 1e6.
|
||||
* @param ilat2 Integer latitude for the end point, this is (latitude + 90) * 1e6.
|
||||
*
|
||||
* @note Integer longitude is ((longitude in degrees) + 180) * 1e6.
|
||||
* Integer latitude is ((latitude in degrees) + 90) * 1e6.
|
||||
*/
|
||||
public double distance(int ilon1, int ilat1, int ilon2, int ilat2) {
|
||||
double cos = cosLat(ilat1);
|
||||
double cos2 = 2 * cos * cos - 1;
|
||||
double cos3 = 2 * cos * cos2 - cos;
|
||||
double cos4 = 2 * cos * cos3 - cos2;
|
||||
double cos5 = 2 * cos * cos4 - cos3;
|
||||
|
||||
// Multipliers for converting integer longitude and latitude into distance
|
||||
// (http://1.usa.gov/1Wb1bv7)
|
||||
double kx = (111.41513 * cos - 0.09455 * cos3 + 0.00012 * cos5) * ILATLNG_TO_LATLNG * KILOMETERS_TO_METERS;
|
||||
double ky = (111.13209 - 0.56605 * cos2 + 0.0012 * cos4) * ILATLNG_TO_LATLNG * KILOMETERS_TO_METERS;
|
||||
|
||||
double dlat = (ilat1 - ilat2) * ky;
|
||||
double dlon = (ilon1 - ilon2) * kx;
|
||||
return Math.sqrt(dlat * dlat + dlon * dlon); // in m
|
||||
}
|
||||
}
|
Loading…
Reference in a new issue