Travel time computation for bikes and foot
Based on simple models for travel speed (Tobler's hiking function for foot, constant power for bike). Fixes #6.
This commit is contained in:
parent
0390a6a266
commit
e4d0b3adc5
3 changed files with 314 additions and 16 deletions
240
brouter-core/src/main/java/btools/router/Cubic.java
Normal file
240
brouter-core/src/main/java/btools/router/Cubic.java
Normal file
|
@ -0,0 +1,240 @@
|
||||||
|
//******************************************************************************
|
||||||
|
//
|
||||||
|
// File: Cubic.java
|
||||||
|
// Package: edu.rit.numeric
|
||||||
|
// Unit: Class edu.rit.numeric.Cubic
|
||||||
|
//
|
||||||
|
// This Java source file is copyright (C) 2008 by Alan Kaminsky. All rights
|
||||||
|
// reserved. For further information, contact the author, Alan Kaminsky, at
|
||||||
|
// ark@cs.rit.edu.
|
||||||
|
//
|
||||||
|
// This Java source file is part of the Parallel Java Library ("PJ"). PJ is free
|
||||||
|
// software; you can redistribute it and/or modify it under the terms of the GNU
|
||||||
|
// General Public License as published by the Free Software Foundation; either
|
||||||
|
// version 3 of the License, or (at your option) any later version.
|
||||||
|
//
|
||||||
|
// PJ is distributed in the hope that it will be useful, but WITHOUT ANY
|
||||||
|
// WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR
|
||||||
|
// A PARTICULAR PURPOSE. See the GNU General Public License for more details.
|
||||||
|
//
|
||||||
|
// Linking this library statically or dynamically with other modules is making a
|
||||||
|
// combined work based on this library. Thus, the terms and conditions of the
|
||||||
|
// GNU General Public License cover the whole combination.
|
||||||
|
//
|
||||||
|
// As a special exception, the copyright holders of this library give you
|
||||||
|
// permission to link this library with independent modules to produce an
|
||||||
|
// executable, regardless of the license terms of these independent modules, and
|
||||||
|
// to copy and distribute the resulting executable under terms of your choice,
|
||||||
|
// provided that you also meet, for each linked independent module, the terms
|
||||||
|
// and conditions of the license of that module. An independent module is a
|
||||||
|
// module which is not derived from or based on this library. If you modify this
|
||||||
|
// library, you may extend this exception to your version of the library, but
|
||||||
|
// you are not obligated to do so. If you do not wish to do so, delete this
|
||||||
|
// exception statement from your version.
|
||||||
|
//
|
||||||
|
// A copy of the GNU General Public License is provided in the file gpl.txt. You
|
||||||
|
// may also obtain a copy of the GNU General Public License on the World Wide
|
||||||
|
// Web at http://www.gnu.org/licenses/gpl.html.
|
||||||
|
//
|
||||||
|
//******************************************************************************
|
||||||
|
|
||||||
|
package btools.router;
|
||||||
|
|
||||||
|
/**
|
||||||
|
* Class Cubic solves for the real roots of a cubic equation with real
|
||||||
|
* coefficients. The cubic equation is of the form
|
||||||
|
* <P>
|
||||||
|
* <I>ax</I><SUP>3</SUP> + <I>bx</I><SUP>2</SUP> + <I>cx</I> + <I>d</I> = 0
|
||||||
|
* <P>
|
||||||
|
* To solve a cubic equation, construct an instance of class Cubic; call the
|
||||||
|
* Cubic object's <TT>solve()</TT> method, passing in the coefficients <I>a</I>,
|
||||||
|
* <I>b</I>, <I>c</I>, and <I>d</I>; and obtain the roots from the Cubic
|
||||||
|
* object's fields. The number of (real) roots, either 1 or 3, is stored in
|
||||||
|
* field <TT>nRoots</TT>. If there is one root, it is stored in field
|
||||||
|
* <TT>x1</TT>, and fields <TT>x2</TT> and <TT>x3</TT> are set to NaN. If there
|
||||||
|
* are three roots, they are stored in fields <TT>x1</TT>, <TT>x2</TT>, and
|
||||||
|
* <TT>x3</TT> in descending order.
|
||||||
|
* <P>
|
||||||
|
* The same Cubic object may be used to solve several cubic equations. Each time
|
||||||
|
* the <TT>solve()</TT> method is called, the solution is stored in the Cubic
|
||||||
|
* object's fields.
|
||||||
|
* <P>
|
||||||
|
* The formulas for the roots of a cubic equation come from:
|
||||||
|
* <P>
|
||||||
|
* E. Weisstein. "Cubic formula." From <I>MathWorld</I>--A Wolfram Web Resource.
|
||||||
|
* <A HREF="http://mathworld.wolfram.com/CubicFormula.html" TARGET="_top">http://mathworld.wolfram.com/CubicFormula.html</A>
|
||||||
|
*
|
||||||
|
* @author Alan Kaminsky
|
||||||
|
* @version 02-Feb-2008
|
||||||
|
*/
|
||||||
|
public class Cubic
|
||||||
|
{
|
||||||
|
|
||||||
|
// Hidden constants.
|
||||||
|
|
||||||
|
private static final double TWO_PI = 2.0 * Math.PI;
|
||||||
|
private static final double FOUR_PI = 4.0 * Math.PI;
|
||||||
|
|
||||||
|
// Exported fields.
|
||||||
|
|
||||||
|
/**
|
||||||
|
* The number of real roots.
|
||||||
|
*/
|
||||||
|
public int nRoots;
|
||||||
|
|
||||||
|
/**
|
||||||
|
* The first real root.
|
||||||
|
*/
|
||||||
|
public double x1;
|
||||||
|
|
||||||
|
/**
|
||||||
|
* The second real root.
|
||||||
|
*/
|
||||||
|
public double x2;
|
||||||
|
|
||||||
|
/**
|
||||||
|
* The third real root.
|
||||||
|
*/
|
||||||
|
public double x3;
|
||||||
|
|
||||||
|
// Exported constructors.
|
||||||
|
|
||||||
|
/**
|
||||||
|
* Construct a new Cubic object.
|
||||||
|
*/
|
||||||
|
public Cubic()
|
||||||
|
{
|
||||||
|
}
|
||||||
|
|
||||||
|
// Exported operations.
|
||||||
|
|
||||||
|
/**
|
||||||
|
* Solve the cubic equation with the given coefficients. The results are
|
||||||
|
* stored in this Cubic object's fields.
|
||||||
|
*
|
||||||
|
* @param a Coefficient of <I>x</I><SUP>3</SUP>.
|
||||||
|
* @param b Coefficient of <I>x</I><SUP>2</SUP>.
|
||||||
|
* @param c Coefficient of <I>x</I>.
|
||||||
|
* @param d Constant coefficient.
|
||||||
|
*
|
||||||
|
* @exception IllegalArgumentException
|
||||||
|
* (unchecked exception) Thrown if <TT>a</TT> is 0; in other words, the
|
||||||
|
* coefficients do not represent a cubic equation.
|
||||||
|
*/
|
||||||
|
public void solve
|
||||||
|
(double a,
|
||||||
|
double b,
|
||||||
|
double c,
|
||||||
|
double d)
|
||||||
|
{
|
||||||
|
// Verify preconditions.
|
||||||
|
if (a == 0.0)
|
||||||
|
{
|
||||||
|
throw new IllegalArgumentException ("Cubic.solve(): a = 0");
|
||||||
|
}
|
||||||
|
|
||||||
|
// Normalize coefficients.
|
||||||
|
double denom = a;
|
||||||
|
a = b/denom;
|
||||||
|
b = c/denom;
|
||||||
|
c = d/denom;
|
||||||
|
|
||||||
|
// Commence solution.
|
||||||
|
double a_over_3 = a / 3.0;
|
||||||
|
double Q = (3*b - a*a) / 9.0;
|
||||||
|
double Q_CUBE = Q*Q*Q;
|
||||||
|
double R = (9*a*b - 27*c - 2*a*a*a) / 54.0;
|
||||||
|
double R_SQR = R*R;
|
||||||
|
double D = Q_CUBE + R_SQR;
|
||||||
|
|
||||||
|
if (D < 0.0)
|
||||||
|
{
|
||||||
|
// Three unequal real roots.
|
||||||
|
nRoots = 3;
|
||||||
|
double theta = Math.acos (R / Math.sqrt (-Q_CUBE));
|
||||||
|
double SQRT_Q = Math.sqrt (-Q);
|
||||||
|
x1 = 2.0 * SQRT_Q * Math.cos (theta/3.0) - a_over_3;
|
||||||
|
x2 = 2.0 * SQRT_Q * Math.cos ((theta+TWO_PI)/3.0) - a_over_3;
|
||||||
|
x3 = 2.0 * SQRT_Q * Math.cos ((theta+FOUR_PI)/3.0) - a_over_3;
|
||||||
|
sortRoots();
|
||||||
|
}
|
||||||
|
else if (D > 0.0)
|
||||||
|
{
|
||||||
|
// One real root.
|
||||||
|
nRoots = 1;
|
||||||
|
double SQRT_D = Math.sqrt (D);
|
||||||
|
double S = Math.cbrt (R + SQRT_D);
|
||||||
|
double T = Math.cbrt (R - SQRT_D);
|
||||||
|
x1 = (S + T) - a_over_3;
|
||||||
|
x2 = Double.NaN;
|
||||||
|
x3 = Double.NaN;
|
||||||
|
}
|
||||||
|
else
|
||||||
|
{
|
||||||
|
// Three real roots, at least two equal.
|
||||||
|
nRoots = 3;
|
||||||
|
double CBRT_R = Math.cbrt (R);
|
||||||
|
x1 = 2*CBRT_R - a_over_3;
|
||||||
|
x2 = x3 = CBRT_R - a_over_3;
|
||||||
|
sortRoots();
|
||||||
|
}
|
||||||
|
}
|
||||||
|
|
||||||
|
// Hidden operations.
|
||||||
|
|
||||||
|
/**
|
||||||
|
* Sort the roots into descending order.
|
||||||
|
*/
|
||||||
|
private void sortRoots()
|
||||||
|
{
|
||||||
|
if (x1 < x2)
|
||||||
|
{
|
||||||
|
double tmp = x1; x1 = x2; x2 = tmp;
|
||||||
|
}
|
||||||
|
if (x2 < x3)
|
||||||
|
{
|
||||||
|
double tmp = x2; x2 = x3; x3 = tmp;
|
||||||
|
}
|
||||||
|
if (x1 < x2)
|
||||||
|
{
|
||||||
|
double tmp = x1; x1 = x2; x2 = tmp;
|
||||||
|
}
|
||||||
|
}
|
||||||
|
|
||||||
|
// Unit test main program.
|
||||||
|
|
||||||
|
/**
|
||||||
|
* Unit test main program.
|
||||||
|
* <P>
|
||||||
|
* Usage: java edu.rit.numeric.Cubic <I>a</I> <I>b</I> <I>c</I> <I>d</I>
|
||||||
|
*/
|
||||||
|
public static void main
|
||||||
|
(String[] args)
|
||||||
|
throws Exception
|
||||||
|
{
|
||||||
|
if (args.length != 4) usage();
|
||||||
|
double a = Double.parseDouble (args[0]);
|
||||||
|
double b = Double.parseDouble (args[1]);
|
||||||
|
double c = Double.parseDouble (args[2]);
|
||||||
|
double d = Double.parseDouble (args[3]);
|
||||||
|
Cubic cubic = new Cubic();
|
||||||
|
cubic.solve (a, b, c, d);
|
||||||
|
System.out.println ("x1 = " + cubic.x1);
|
||||||
|
if (cubic.nRoots == 3)
|
||||||
|
{
|
||||||
|
System.out.println ("x2 = " + cubic.x2);
|
||||||
|
System.out.println ("x3 = " + cubic.x3);
|
||||||
|
}
|
||||||
|
}
|
||||||
|
|
||||||
|
/**
|
||||||
|
* Print a usage message and exit.
|
||||||
|
*/
|
||||||
|
private static void usage()
|
||||||
|
{
|
||||||
|
System.err.println ("Usage: java edu.rit.numeric.Cubic <a> <b> <c> <d>");
|
||||||
|
System.err.println ("Solves ax^3 + bx^2 + cx + d = 0");
|
||||||
|
System.exit (1);
|
||||||
|
}
|
||||||
|
|
||||||
|
}
|
|
@ -57,6 +57,7 @@ public final class RoutingContext
|
||||||
public int uphillcutoff;
|
public int uphillcutoff;
|
||||||
public boolean carMode;
|
public boolean carMode;
|
||||||
public boolean bikeMode;
|
public boolean bikeMode;
|
||||||
|
public boolean footMode;
|
||||||
public boolean considerTurnRestrictions;
|
public boolean considerTurnRestrictions;
|
||||||
public boolean processUnusedTags;
|
public boolean processUnusedTags;
|
||||||
public boolean forceSecondaryData;
|
public boolean forceSecondaryData;
|
||||||
|
@ -129,6 +130,7 @@ public final class RoutingContext
|
||||||
if ( uphillcostdiv != 0 ) uphillcostdiv = 1000000/uphillcostdiv;
|
if ( uphillcostdiv != 0 ) uphillcostdiv = 1000000/uphillcostdiv;
|
||||||
carMode = 0.f != expctxGlobal.getVariableValue( "validForCars", 0.f );
|
carMode = 0.f != expctxGlobal.getVariableValue( "validForCars", 0.f );
|
||||||
bikeMode = 0.f != expctxGlobal.getVariableValue( "validForBikes", 0.f );
|
bikeMode = 0.f != expctxGlobal.getVariableValue( "validForBikes", 0.f );
|
||||||
|
footMode = 0.f != expctxGlobal.getVariableValue( "validForFoot", 0.f );
|
||||||
|
|
||||||
// turn-restrictions used per default for car profiles
|
// turn-restrictions used per default for car profiles
|
||||||
considerTurnRestrictions = 0.f != expctxGlobal.getVariableValue( "considerTurnRestrictions", carMode ? 1.f : 0.f );
|
considerTurnRestrictions = 0.f != expctxGlobal.getVariableValue( "considerTurnRestrictions", carMode ? 1.f : 0.f );
|
||||||
|
@ -170,6 +172,20 @@ public final class RoutingContext
|
||||||
}
|
}
|
||||||
turnInstructionCatchingRange = expctxGlobal.getVariableValue( "turnInstructionCatchingRange", 40.f );
|
turnInstructionCatchingRange = expctxGlobal.getVariableValue( "turnInstructionCatchingRange", 40.f );
|
||||||
turnInstructionRoundabouts = expctxGlobal.getVariableValue( "turnInstructionRoundabouts", 1.f ) != 0.f;
|
turnInstructionRoundabouts = expctxGlobal.getVariableValue( "turnInstructionRoundabouts", 1.f ) != 0.f;
|
||||||
|
|
||||||
|
// Speed computation model (for bikes)
|
||||||
|
if (bikeMode) {
|
||||||
|
// Mass of the biker + bike + luggages, in kg
|
||||||
|
bikeMass = expctxGlobal.getVariableValue( "bikeMass", 90.f );
|
||||||
|
// Max speed (before braking), in km/h in profile and m/s in code
|
||||||
|
maxSpeed = expctxGlobal.getVariableValue( "maxSpeed", 45.f ) / 3.6;
|
||||||
|
// Equivalent surface for wind, S * C_x, F = -1/2 * S * C_x * v^2 = - S_C_x * v^2
|
||||||
|
S_C_x = expctxGlobal.getVariableValue( "S_C_x", 0.5f * 0.45f );
|
||||||
|
// Default resistance of the road, F = - m * g * C_r (for good quality road)
|
||||||
|
defaultC_r = expctxGlobal.getVariableValue( "C_r", 0.01f );
|
||||||
|
// Constant power of the biker (in W)
|
||||||
|
bikerPower = expctxGlobal.getVariableValue( "bikerPower", 100.f );
|
||||||
|
}
|
||||||
}
|
}
|
||||||
|
|
||||||
public List<OsmNodeNamed> nogopoints = null;
|
public List<OsmNodeNamed> nogopoints = null;
|
||||||
|
@ -209,6 +225,13 @@ public final class RoutingContext
|
||||||
public double turnInstructionCatchingRange;
|
public double turnInstructionCatchingRange;
|
||||||
public boolean turnInstructionRoundabouts;
|
public boolean turnInstructionRoundabouts;
|
||||||
|
|
||||||
|
// Speed computation model (for bikes)
|
||||||
|
public double bikeMass;
|
||||||
|
public double maxSpeed;
|
||||||
|
public double S_C_x;
|
||||||
|
public double defaultC_r;
|
||||||
|
public double bikerPower;
|
||||||
|
|
||||||
public static void prepareNogoPoints( List<OsmNodeNamed> nogos )
|
public static void prepareNogoPoints( List<OsmNodeNamed> nogos )
|
||||||
{
|
{
|
||||||
for( OsmNodeNamed nogo : nogos )
|
for( OsmNodeNamed nogo : nogos )
|
||||||
|
|
|
@ -12,6 +12,10 @@ import btools.mapaccess.TurnRestriction;
|
||||||
|
|
||||||
final class StdPath extends OsmPath
|
final class StdPath extends OsmPath
|
||||||
{
|
{
|
||||||
|
private double totalTime; // travel time (seconds)
|
||||||
|
// Gravitational constant, g
|
||||||
|
private double GRAVITY = 9.81; // in meters per second^(-2)
|
||||||
|
|
||||||
/**
|
/**
|
||||||
* The elevation-hysteresis-buffer (0-10 m)
|
* The elevation-hysteresis-buffer (0-10 m)
|
||||||
*/
|
*/
|
||||||
|
@ -24,6 +28,7 @@ final class StdPath extends OsmPath
|
||||||
StdPath origin = (StdPath)orig;
|
StdPath origin = (StdPath)orig;
|
||||||
this.ehbd = origin.ehbd;
|
this.ehbd = origin.ehbd;
|
||||||
this.ehbu = origin.ehbu;
|
this.ehbu = origin.ehbu;
|
||||||
|
this.totalTime = origin.totalTime;
|
||||||
}
|
}
|
||||||
|
|
||||||
@Override
|
@Override
|
||||||
|
@ -31,6 +36,7 @@ final class StdPath extends OsmPath
|
||||||
{
|
{
|
||||||
ehbd = 0;
|
ehbd = 0;
|
||||||
ehbu = 0;
|
ehbu = 0;
|
||||||
|
totalTime = 0;
|
||||||
}
|
}
|
||||||
|
|
||||||
@Override
|
@Override
|
||||||
|
@ -140,6 +146,30 @@ final class StdPath extends OsmPath
|
||||||
|
|
||||||
sectionCost += dist * costfactor + 0.5f;
|
sectionCost += dist * costfactor + 0.5f;
|
||||||
|
|
||||||
|
if (rc.bikeMode || rc.footMode) {
|
||||||
|
// Uphill angle
|
||||||
|
double alpha = Math.atan2(delta_h, distance);
|
||||||
|
|
||||||
|
// Travel speed
|
||||||
|
double speed = Double.NaN;
|
||||||
|
if (rc.footMode) { // TODO: || tags['way'].search('bicycle=dismount') !== -1) {
|
||||||
|
// Use Tobler's hiking function for walking sections
|
||||||
|
speed = 6 * Math.exp(-3.5 * Math.abs(delta_h / distance + 0.05)) / 3.6;
|
||||||
|
} else {
|
||||||
|
// Compute the speed assuming a basic kinematic model with constant
|
||||||
|
// power.
|
||||||
|
Cubic speedEquation = new Cubic();
|
||||||
|
speedEquation.solve(rc.S_C_x, 0.0, (rc.bikeMass * GRAVITY * (rc.defaultC_r + Math.sin(alpha))), -1.0 * rc.bikerPower);
|
||||||
|
if (speedEquation.nRoots > 0 && speedEquation.x1 >= 0) {
|
||||||
|
// Roots are sorted in decreasing order
|
||||||
|
speed = Math.min(speedEquation.x1, rc.maxSpeed);
|
||||||
|
}
|
||||||
|
}
|
||||||
|
if (!Double.isNaN(speed) && speed > 0) {
|
||||||
|
totalTime += distance / speed;
|
||||||
|
}
|
||||||
|
}
|
||||||
|
|
||||||
return sectionCost;
|
return sectionCost;
|
||||||
}
|
}
|
||||||
|
|
||||||
|
@ -593,4 +623,9 @@ final class StdPath extends OsmPath
|
||||||
return cost > c;
|
return cost > c;
|
||||||
}
|
}
|
||||||
|
|
||||||
|
@Override
|
||||||
|
public double getTotalTime()
|
||||||
|
{
|
||||||
|
return totalTime;
|
||||||
|
}
|
||||||
}
|
}
|
||||||
|
|
Loading…
Reference in a new issue