git clone https://github.com/Daedaluz/rknn-docker.git cd rknn-docker sudo docker build -t rknn-lite . docker run -it --rm \ -v $(pwd):/workspace \ rknn-lite \ bash cd wirkspace python3 convert_models.py poi python3 test_rknn.py risultato Runtime init OK (CPU mode) SCRFD (Face Detector) https://github.com/yakhyo/face-reidentification/releases/download/v0.0.1/det_2.5g.onnx opz https://github.com/yakhyo/face-reidentification/releases/download/v0.0.1/det_500m.onnx https://github.com/yakhyo/face-reidentification/releases/download/v0.0.1/det_10g.onnx ArcFace leggero https://github.com/yakhyo/face-reidentification/releases/download/v0.0.1/w600k_mbf.onnx pesante e piu accurato https://github.com/yakhyo/face-reidentification/releases/download/v0.0.1/w600k_r50.onnx SCRFD (Face Detector) – ONNX diretto Dalla release del progetto face‑reidentification che include i modelli SCRFD: SCRFD 2.5G https://github.com/yakhyo/face-reidentification/releases/download/v0.0.1/det_2.5g.onnx (Opzionali) SCRFD 500Mhttps://github.com/yakhyo/face-reidentification/releases/download/v0.0.1/det_500m.onnx SCRFD 10Ghttps://github.com/yakhyo/face-reidentification/releases/download/v0.0.1/det_10g.onnx 🔹 ArcFace (Face Recognition) – ONNX diretto Dalla stessa release, modelli ArcFace in ONNX: ArcFace MobileFace (veloce, leggero) https://github.com/yakhyo/face-reidentification/releases/download/v0.0.1/w600k_mbf.onnx ArcFace ResNet‑50 (più pesante, più accurato) https://github.com/yakhyo/face-reidentification/releases/download/v0.0.1/w600k_r50.onnx 📌 Consiglio tecnico per RK3588 Per Orange Pi 5 Plus: SCRFD 2.5G → miglior compromesso velocità/precisione ArcFace MobileFace (w600k_mbf.onnx) → più leggero, conversione RKNN più stabile