79 lines
No EOL
3.6 KiB
JavaScript
79 lines
No EOL
3.6 KiB
JavaScript
import * as tslib_1 from "tslib";
|
|
import * as tf from '@tensorflow/tfjs-core';
|
|
import { NeuralNetwork, normalize, range, toNetInput, } from 'tfjs-image-recognition-base';
|
|
import { depthwiseSeparableConv } from '../common/depthwiseSeparableConv';
|
|
import { extractParams } from './extractParams';
|
|
import { extractParamsFromWeigthMap } from './extractParamsFromWeigthMap';
|
|
function conv(x, params, stride) {
|
|
return tf.add(tf.conv2d(x, params.filters, stride, 'same'), params.bias);
|
|
}
|
|
function reductionBlock(x, params, isActivateInput) {
|
|
if (isActivateInput === void 0) { isActivateInput = true; }
|
|
var out = isActivateInput ? tf.relu(x) : x;
|
|
out = depthwiseSeparableConv(out, params.separable_conv0, [1, 1]);
|
|
out = depthwiseSeparableConv(tf.relu(out), params.separable_conv1, [1, 1]);
|
|
out = tf.maxPool(out, [3, 3], [2, 2], 'same');
|
|
out = tf.add(out, conv(x, params.expansion_conv, [2, 2]));
|
|
return out;
|
|
}
|
|
function mainBlock(x, params) {
|
|
var out = depthwiseSeparableConv(tf.relu(x), params.separable_conv0, [1, 1]);
|
|
out = depthwiseSeparableConv(tf.relu(out), params.separable_conv1, [1, 1]);
|
|
out = depthwiseSeparableConv(tf.relu(out), params.separable_conv2, [1, 1]);
|
|
out = tf.add(out, x);
|
|
return out;
|
|
}
|
|
var TinyXception = /** @class */ (function (_super) {
|
|
tslib_1.__extends(TinyXception, _super);
|
|
function TinyXception(numMainBlocks) {
|
|
var _this = _super.call(this, 'TinyXception') || this;
|
|
_this._numMainBlocks = numMainBlocks;
|
|
return _this;
|
|
}
|
|
TinyXception.prototype.forwardInput = function (input) {
|
|
var _this = this;
|
|
var params = this.params;
|
|
if (!params) {
|
|
throw new Error('TinyXception - load model before inference');
|
|
}
|
|
return tf.tidy(function () {
|
|
var batchTensor = input.toBatchTensor(112, true);
|
|
var meanRgb = [122.782, 117.001, 104.298];
|
|
var normalized = normalize(batchTensor, meanRgb).div(tf.scalar(256));
|
|
var out = tf.relu(conv(normalized, params.entry_flow.conv_in, [2, 2]));
|
|
out = reductionBlock(out, params.entry_flow.reduction_block_0, false);
|
|
out = reductionBlock(out, params.entry_flow.reduction_block_1);
|
|
range(_this._numMainBlocks, 0, 1).forEach(function (idx) {
|
|
out = mainBlock(out, params.middle_flow["main_block_" + idx]);
|
|
});
|
|
out = reductionBlock(out, params.exit_flow.reduction_block);
|
|
out = tf.relu(depthwiseSeparableConv(out, params.exit_flow.separable_conv, [1, 1]));
|
|
return out;
|
|
});
|
|
};
|
|
TinyXception.prototype.forward = function (input) {
|
|
return tslib_1.__awaiter(this, void 0, void 0, function () {
|
|
var _a;
|
|
return tslib_1.__generator(this, function (_b) {
|
|
switch (_b.label) {
|
|
case 0:
|
|
_a = this.forwardInput;
|
|
return [4 /*yield*/, toNetInput(input)];
|
|
case 1: return [2 /*return*/, _a.apply(this, [_b.sent()])];
|
|
}
|
|
});
|
|
});
|
|
};
|
|
TinyXception.prototype.getDefaultModelName = function () {
|
|
return 'tiny_xception_model';
|
|
};
|
|
TinyXception.prototype.extractParamsFromWeigthMap = function (weightMap) {
|
|
return extractParamsFromWeigthMap(weightMap, this._numMainBlocks);
|
|
};
|
|
TinyXception.prototype.extractParams = function (weights) {
|
|
return extractParams(weights, this._numMainBlocks);
|
|
};
|
|
return TinyXception;
|
|
}(NeuralNetwork));
|
|
export { TinyXception };
|
|
//# sourceMappingURL=TinyXception.js.map
|